Nuprl Lemma : dd_wf
∀d:ℕ+. ∀x:ℝ.
  (d decimal digits of x  ∈ {a:Atom| a = "display-as" ∈ Atom} 
   × {a:Atom| a = "decimal-rational" ∈ Atom} 
   × {z:ℝ| z = x} 
   × {n:ℕ+| n = d ∈ ℤ} 
   × {n:ℤ| |x - (r(n)/r(10^d))| ≤ (r(2)/r(10^d))} )
Proof
Definitions occuring in Statement : 
dd: n decimal digits of x 
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
fastexp: i^n
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
token: "$token"
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dd: n decimal digits of x 
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rational-approx: (x within 1/n)
, 
real: ℝ
, 
rneq: x ≠ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
Lemmas referenced : 
exp-fastexp, 
exp_wf_nat_plus, 
istype-less_than, 
real_wf, 
nat_plus_wf, 
value-type-has-value, 
set-value-type, 
less_than_wf, 
istype-int, 
int-value-type, 
nat_plus_subtype_nat, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
nat_plus_properties, 
primrec-wf-nat-plus, 
equal-wf-base, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-false, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
mul-commutes, 
div-cancel, 
nequal_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
exp_add, 
exp1, 
subtype_rel_self, 
iff_weakening_equal, 
rational-approx-property, 
decidable__lt, 
multiply-is-int-iff, 
false_wf, 
atom_subtype_base, 
req_weakening, 
req_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
int-rdiv_wf, 
int-to-real_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
nat_plus_inc_int_nzero, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
int-rdiv-req, 
rleq-int-fractions, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
valueall-type-has-valueall, 
product-valueall-type, 
istype-atom, 
set-valueall-type, 
atom-valueall-type, 
real-valueall-type, 
int-valueall-type, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
inhabitedIsType, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
callbyvalueReduce, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
closedConclusion, 
applyEquality, 
instantiate, 
cumulativity, 
rename, 
setElimination, 
equalityIsType4, 
baseApply, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
multiplyEquality, 
imageElimination, 
universeEquality, 
divideEquality, 
productElimination, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
independent_pairEquality, 
tokenEquality, 
inrFormation_alt, 
productEquality, 
setEquality, 
atomEquality, 
setIsType
Latex:
\mforall{}d:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.
    (d  decimal  digits  of  x    \mmember{}  \{a:Atom|  a  =  "display-as"\} 
      \mtimes{}  \{a:Atom|  a  =  "decimal-rational"\} 
      \mtimes{}  \{z:\mBbbR{}|  z  =  x\} 
      \mtimes{}  \{n:\mBbbN{}\msupplus{}|  n  =  d\} 
      \mtimes{}  \{n:\mBbbZ{}|  |x  -  (r(n)/r(10\^{}d))|  \mleq{}  (r(2)/r(10\^{}d))\}  )
Date html generated:
2019_10_30-AM-07_52_34
Last ObjectModification:
2018_11_08-PM-02_14_25
Theory : reals
Home
Index