Nuprl Lemma : fun-series-converges-tail

M:ℕ. ∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.  n.f[n M;x]↓ for x ∈  Σn.f[n;x]↓ for x ∈ I)


Proof




Definitions occuring in Statement :  fun-series-converges: Σn.f[n; x]↓ for x ∈ I rfun: I ⟶ℝ interval: Interval nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q fun-series-converges: Σn.f[n; x]↓ for x ∈ I member: t ∈ T so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q le: A ≤ B less_than': less_than'(a;b) rev_implies:  Q fun-cauchy: λn.f[n; x] is cauchy for x ∈ I nat_plus: + int_upper: {i...} rneq: x ≠ y label: ...$L... t sq_stable: SqStable(P) squash: T subinterval: I ⊆  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  fun-converges-iff-cauchy rsum_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_wf real_wf i-member_wf int_seg_subtype_nat istype-false nat_plus_properties decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than istype-int_upper i-approx_wf rleq_wf rabs_wf rsub_wf i-member-approx rdiv_wf int-to-real_wf rless-int int_upper_properties rless_wf nat_plus_wf icompact_wf fun-series-converges_wf rfun_wf interval_wf istype-nat subtract_wf sq_stable__icompact itermSubtract_wf int_term_value_subtract_lemma i-approx-is-subinterval subtype_rel_sets_simple rleq_functionality rabs_functionality rsum-difference req_weakening general_arith_equation1 rsum-shift rabs-difference-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt isectElimination closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis applyEquality dependent_set_memberEquality_alt addEquality productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType setIsType inhabitedIsType functionIsType inrFormation_alt imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}M:\mBbbN{}.  \mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    (\mSigma{}n.f[n  +  M;x]\mdownarrow{}  for  x  \mmember{}  I  {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)



Date html generated: 2019_10_30-AM-08_59_17
Last ObjectModification: 2018_11_08-PM-02_13_18

Theory : reals


Home Index