Nuprl Lemma : fun-series-converges-tail
∀M:ℕ. ∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.  (Σn.f[n + M;x]↓ for x ∈ I 
⇒ Σn.f[n;x]↓ for x ∈ I)
Proof
Definitions occuring in Statement : 
fun-series-converges: Σn.f[n; x]↓ for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
fun-series-converges: Σn.f[n; x]↓ for x ∈ I
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rev_implies: P 
⇐ Q
, 
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
rneq: x ≠ y
, 
label: ...$L... t
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subinterval: I ⊆ J 
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
fun-converges-iff-cauchy, 
rsum_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_wf, 
real_wf, 
i-member_wf, 
int_seg_subtype_nat, 
istype-false, 
nat_plus_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
istype-int_upper, 
i-approx_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
i-member-approx, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
int_upper_properties, 
rless_wf, 
nat_plus_wf, 
icompact_wf, 
fun-series-converges_wf, 
rfun_wf, 
interval_wf, 
istype-nat, 
subtract_wf, 
sq_stable__icompact, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
i-approx-is-subinterval, 
subtype_rel_sets_simple, 
rleq_functionality, 
rabs_functionality, 
rsum-difference, 
req_weakening, 
general_arith_equation1, 
rsum-shift, 
rabs-difference-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
productElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
setIsType, 
inhabitedIsType, 
functionIsType, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}M:\mBbbN{}.  \mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    (\mSigma{}n.f[n  +  M;x]\mdownarrow{}  for  x  \mmember{}  I  {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)
Date html generated:
2019_10_30-AM-08_59_17
Last ObjectModification:
2018_11_08-PM-02_13_18
Theory : reals
Home
Index