Nuprl Lemma : i-member-diff-bound

I:Interval. (icompact(I)  (∀x,y:{x:ℝx ∈ I} .  (|x y| ≤ |I|)))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-member: r ∈ I i-length: |I| interval: Interval rleq: x ≤ y rabs: |x| rsub: y real: all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_stable: SqStable(P) iff: ⇐⇒ Q and: P ∧ Q rbetween: x≤y≤z i-length: |I| prop: squash: T so_lambda: λ2x.t[x] so_apply: x[s] icompact: icompact(I) rev_implies:  Q cand: c∧ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} rsub: y uiff: uiff(P;Q)
Lemmas referenced :  sq_stable__rleq rabs_wf rsub_wf i-length_wf i-member-compact left-endpoint_wf real_wf right-endpoint_wf rleq_wf equal_wf set_wf i-member_wf icompact_wf interval_wf rabs-difference-bound-rleq radd_wf rmul_wf int-to-real_wf rminus_wf rleq_weakening_equal rleq_functionality_wrt_implies rsub_functionality_wrt_rleq uiff_transitivity rleq_functionality radd_functionality rminus-radd req_weakening radd-ac req_transitivity req_inversion rmul-identity1 rmul-distrib2 rmul_functionality rminus-as-rmul radd-int rmul-zero-both rminus-rminus radd_comm radd-zero-both radd_functionality_wrt_rleq radd-rminus-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation setElimination thin rename cut introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_isectElimination independent_functionElimination dependent_functionElimination productElimination because_Cache equalityTransitivity equalitySymmetry sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality independent_pairFormation minusEquality natural_numberEquality addEquality

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    (|x  -  y|  \mleq{}  |I|)))



Date html generated: 2017_10_03-AM-09_34_26
Last ObjectModification: 2017_07_28-AM-07_52_16

Theory : reals


Home Index