Nuprl Lemma : r2-det-convex2
∀[p,q,r,t,s:ℝ^2]. ∀[a,b,c:ℝ].
|a*p + b*q + c*rts| = ((a * |pts|) + (b * |qts|) + (c * |rts|)) supposing ((a + b + c) = r1) ∧ r1 - a ≠ r0
Proof
Definitions occuring in Statement :
r2-det: |pqr|
,
real-vec-mul: a*X
,
real-vec-add: X + Y
,
real-vec: ℝ^n
,
rneq: x ≠ y
,
rsub: x - y
,
req: x = y
,
rmul: a * b
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
all: ∀x:A. B[x]
,
req-vec: req-vec(n;x;y)
,
real-vec-mul: a*X
,
real-vec-add: X + Y
,
real-vec: ℝ^n
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
rsub: x - y
Lemmas referenced :
req_witness,
r2-det_wf,
real-vec-add_wf,
false_wf,
le_wf,
real-vec-mul_wf,
radd_wf,
rmul_wf,
req_wf,
int-to-real_wf,
rneq_wf,
rsub_wf,
real_wf,
real-vec_wf,
r2-det-convex1,
rdiv_wf,
int_seg_wf,
equal_wf,
req_weakening,
uiff_transitivity,
req_functionality,
rmul-distrib,
radd_functionality,
rmul_functionality,
rmul_comm,
rmul-ac,
rmul-rdiv-cancel,
r2-det_functionality,
real-vec-add_functionality,
req-vec_weakening,
rmul_preserves_req,
rminus_wf,
radd-preserves-req,
squash_wf,
true_wf,
iff_weakening_equal,
rmul-rdiv-cancel2,
req_transitivity,
rmul_over_rminus,
rmul-one-both,
rminus_functionality,
radd_comm,
rminus-as-rmul,
radd-assoc,
req_inversion,
rmul-identity1,
rmul-distrib2,
radd-int,
rmul-zero-both,
radd-zero-both,
radd-ac,
radd-rminus-both,
real-vec-mul_functionality,
rmul-assoc,
radd-rminus-assoc
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
extract_by_obid,
isectElimination,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation,
hypothesis,
hypothesisEquality,
because_Cache,
independent_functionElimination,
productEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
dependent_functionElimination,
applyEquality,
minusEquality,
addEquality,
lambdaEquality,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[p,q,r,t,s:\mBbbR{}\^{}2]. \mforall{}[a,b,c:\mBbbR{}].
|a*p + b*q + c*rts| = ((a * |pts|) + (b * |qts|) + (c * |rts|))
supposing ((a + b + c) = r1) \mwedge{} r1 - a \mneq{} r0
Date html generated:
2017_10_03-AM-11_45_17
Last ObjectModification:
2017_04_11-PM-05_32_29
Theory : reals
Home
Index