Nuprl Lemma : r2-left-right-lemma

a,b,x,y:ℝ^2.  (r2-left(x;a;b)  r2-left(y;b;a)  (∃t:ℝ((t ∈ [r0, r1]) ∧ (|t*x r1 t*yab| r0))))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) r2-det: |pqr| real-vec-mul: a*X real-vec-add: Y real-vec: ^n rccint: [l, u] i-member: r ∈ I rsub: y req: y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  r2-left: r2-left(p;q;r) all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True uiff: uiff(P;Q) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] top: Top req_int_terms: t1 ≡ t2 r2-det: |pqr| iff: ⇐⇒ Q rev_implies:  Q guard: {T} rneq: x ≠ y or: P ∨ Q cand: c∧ B rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y)
Lemmas referenced :  rless_wf int-to-real_wf r2-det_wf real-vec_wf false_wf le_wf radd_wf rmul_wf rsub_wf lelt_wf rminus_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf itermMinus_wf req-iff-rsub-is-0 req_wf exists_wf real_wf rleq_wf real-vec-mul_wf i-member_wf rccint_wf real-vec-add_wf req_functionality r2-det-add req_weakening radd_functionality r2-det-mul member_rccint_lemma real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_minus_lemma equal_wf rless_functionality radd-preserves-rless radd-zero radd-rminus rless_transitivity2 rleq_weakening_rless rdiv_wf rmul_preserves_rleq rmul_preserves_req rmul-zero-both rinv_wf2 trivial-rleq-radd rleq_functionality req_transitivity rminus_functionality rmul-rinv3
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality dependent_set_memberEquality independent_pairFormation productElimination because_Cache applyEquality imageMemberEquality baseClosed independent_isectElimination lambdaEquality productEquality addLevel existsFunctionality andLevelFunctionality dependent_functionElimination isect_memberEquality voidElimination voidEquality approximateComputation int_eqEquality intEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_pairFormation inrFormation

Latex:
\mforall{}a,b,x,y:\mBbbR{}\^{}2.
    (r2-left(x;a;b)  {}\mRightarrow{}  r2-left(y;b;a)  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((t  \mmember{}  [r0,  r1])  \mwedge{}  (|t*x  +  r1  -  t*yab|  =  r0))))



Date html generated: 2017_10_03-AM-11_56_28
Last ObjectModification: 2017_06_09-PM-05_47_42

Theory : reals


Home Index