Nuprl Lemma : r2-left-right-lemma
∀a,b,x,y:ℝ^2.  (r2-left(x;a;b) 
⇒ r2-left(y;b;a) 
⇒ (∃t:ℝ. ((t ∈ [r0, r1]) ∧ (|t*x + r1 - t*yab| = r0))))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
r2-det: |pqr|
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
r2-left: r2-left(p;q;r)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
r2-det: |pqr|
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
r2-det_wf, 
real-vec_wf, 
false_wf, 
le_wf, 
radd_wf, 
rmul_wf, 
rsub_wf, 
lelt_wf, 
rminus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
req_wf, 
exists_wf, 
real_wf, 
rleq_wf, 
real-vec-mul_wf, 
i-member_wf, 
rccint_wf, 
real-vec-add_wf, 
req_functionality, 
r2-det-add, 
req_weakening, 
radd_functionality, 
r2-det-mul, 
member_rccint_lemma, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma, 
equal_wf, 
rless_functionality, 
radd-preserves-rless, 
radd-zero, 
radd-rminus, 
rless_transitivity2, 
rleq_weakening_rless, 
rdiv_wf, 
rmul_preserves_rleq, 
rmul_preserves_req, 
rmul-zero-both, 
rinv_wf2, 
trivial-rleq-radd, 
rleq_functionality, 
req_transitivity, 
rminus_functionality, 
rmul-rinv3
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
productElimination, 
because_Cache, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
lambdaEquality, 
productEquality, 
addLevel, 
existsFunctionality, 
andLevelFunctionality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_pairFormation, 
inrFormation
Latex:
\mforall{}a,b,x,y:\mBbbR{}\^{}2.
    (r2-left(x;a;b)  {}\mRightarrow{}  r2-left(y;b;a)  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((t  \mmember{}  [r0,  r1])  \mwedge{}  (|t*x  +  r1  -  t*yab|  =  r0))))
Date html generated:
2017_10_03-AM-11_56_28
Last ObjectModification:
2017_06_09-PM-05_47_42
Theory : reals
Home
Index