Nuprl Lemma : real-vec-norm-diff-squared

[n:ℕ]. ∀[x,y:ℝ^n].  (||x y||^2 ((||x||^2 ||y||^2) (r(-2) x⋅y)))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec-sub: Y real-vec: ^n rnexp: x^k1 req: y rmul: b radd: b int-to-real: r(n) nat: uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rsub: y
Lemmas referenced :  req_witness rnexp_wf false_wf le_wf real-vec-norm_wf real-vec-sub_wf radd_wf rmul_wf int-to-real_wf dot-product_wf real-vec_wf nat_wf rsub_wf req_functionality req_transitivity real-vec-norm-squared dot-product-linearity1-sub rsub_functionality radd_functionality req_weakening dot-product-comm req_wf rminus_wf uiff_transitivity rminus-radd req_inversion radd-assoc radd_comm rmul_functionality rminus-as-rmul rmul-distrib2 radd-int rminus-rminus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality because_Cache minusEquality independent_functionElimination isect_memberEquality independent_isectElimination productElimination addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  -  y||\^{}2  =  ((||x||\^{}2  +  ||y||\^{}2)  +  (r(-2)  *  x\mcdot{}y)))



Date html generated: 2016_10_26-AM-10_21_23
Last ObjectModification: 2016_09_30-PM-00_25_05

Theory : reals


Home Index