Nuprl Lemma : real-vec-norm-diff-squared
∀[n:ℕ]. ∀[x,y:ℝ^n].  (||x - y||^2 = ((||x||^2 + ||y||^2) + (r(-2) * x⋅y)))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec-sub: X - Y
, 
real-vec: ℝ^n
, 
rnexp: x^k1
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
Lemmas referenced : 
req_witness, 
rnexp_wf, 
false_wf, 
le_wf, 
real-vec-norm_wf, 
real-vec-sub_wf, 
radd_wf, 
rmul_wf, 
int-to-real_wf, 
dot-product_wf, 
real-vec_wf, 
nat_wf, 
rsub_wf, 
req_functionality, 
req_transitivity, 
real-vec-norm-squared, 
dot-product-linearity1-sub, 
rsub_functionality, 
radd_functionality, 
req_weakening, 
dot-product-comm, 
req_wf, 
rminus_wf, 
uiff_transitivity, 
rminus-radd, 
req_inversion, 
radd-assoc, 
radd_comm, 
rmul_functionality, 
rminus-as-rmul, 
rmul-distrib2, 
radd-int, 
rminus-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
minusEquality, 
independent_functionElimination, 
isect_memberEquality, 
independent_isectElimination, 
productElimination, 
addEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  -  y||\^{}2  =  ((||x||\^{}2  +  ||y||\^{}2)  +  (r(-2)  *  x\mcdot{}y)))
Date html generated:
2016_10_26-AM-10_21_23
Last ObjectModification:
2016_09_30-PM-00_25_05
Theory : reals
Home
Index