Nuprl Lemma : real-vec-norm-positive-iff

n:ℕ. ∀x:ℝ^n.  (r0 < ||x|| ⇐⇒ ∃i:ℕn. r0 ≠ i)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec: ^n rneq: x ≠ y rless: x < y int-to-real: r(n) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] real-vec-norm: ||x|| member: t ∈ T uall: [x:A]. B[x] dot-product: x⋅y iff: ⇐⇒ Q and: P ∧ Q implies:  Q nat: so_lambda: λ2x.t[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] nat_plus: + rneq: x ≠ y cand: c∧ B subtype_rel: A ⊆B
Lemmas referenced :  real-vec_wf istype-nat rless_wf int-to-real_wf rsum_wf subtract_wf rmul_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma istype-le istype-less_than int_seg_wf rneq_wf rsum-positive-implies nat_plus_properties subtract-add-cancel rabs_wf square-nonneg rless_functionality req_weakening rabs-of-nonneg rmul-is-positive rsum-of-nonneg-positive-iff rsqrt-positive-iff dot-product-nonneg dot-product_wf rleq_wf rsqrt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation natural_numberEquality setElimination rename sqequalRule lambdaEquality_alt applyEquality dependent_set_memberEquality_alt productElimination imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType because_Cache addEquality inlFormation_alt inrFormation_alt

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbR{}\^{}n.    (r0  <  ||x||  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  r0  \mneq{}  x  i)



Date html generated: 2019_10_30-AM-08_06_42
Last ObjectModification: 2019_04_02-AM-09_54_10

Theory : reals


Home Index