Nuprl Lemma : real-vec-sum-split-first

[n,m:ℤ]. ∀[k:ℕ]. ∀[x:{n..m 1-} ⟶ ℝ^k].  req-vec(k;Σ{x[i] n≤i≤m};x[n] + Σ{x[i 1] n≤i≤1}) supposing n ≤ m


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness real-vec-sum_wf int_seg_wf subtype_rel_self real_wf real-vec-add_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma istype-le istype-less_than subtract_wf itermSubtract_wf int_term_value_subtract_lemma real-vec_wf istype-nat real-vec-add_functionality real-vec-sum-split req-vec_functionality req-vec_weakening real-vec-sum-shift add-subtract-cancel real-vec-sum-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality universeIsType addEquality natural_numberEquality hypothesis functionEquality setElimination rename productElimination imageElimination dependent_set_memberEquality_alt independent_pairFormation unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType because_Cache functionIsTypeImplies inhabitedIsType isectIsTypeImplies functionIsType

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].
    req-vec(k;\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\};x[n]  +  \mSigma{}\{x[i  +  1]  |  n\mleq{}i\mleq{}m  -  1\})  supposing  n  \mleq{}  m



Date html generated: 2019_10_30-AM-08_03_12
Last ObjectModification: 2019_09_18-PM-02_43_53

Theory : reals


Home Index