Nuprl Lemma : rexp-approx-property

[x:ℝ]. ∀[k:ℕ]. ∀[N:ℕ+].  ((|x| ≤ (r1/r(4)))  1-approx(Σ{(x^i)/(i)! 0≤i≤k};N;rexp-approx(x;k;N)))


Proof




Definitions occuring in Statement :  rexp-approx: rexp-approx(x;k;N) ireal-approx: j-approx(x;M;z) rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rleq: x ≤ y rabs: |x| rnexp: x^k1 int-rdiv: (a)/k1 int-to-real: r(n) real: fact: (n)! nat_plus: + nat: uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B rexp-approx: rexp-approx(x;k;N) nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] iff: ⇐⇒ Q rneq: x ≠ y guard: {T} rev_implies:  Q less_than': less_than'(a;b) true: True ireal-approx: j-approx(x;M;z) rleq: x ≤ y rnonneg: rnonneg(x) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  poly-approx-property int-rdiv_wf fact_wf nat_plus_inc_int_nzero int-to-real_wf rsum_functionality rmul_wf int_seg_properties nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le rnexp_wf int_seg_wf ireal-approx_functionality rexp-approx_wf rsum_wf rleq_wf rabs_wf rdiv_wf rless-int rless_wf le_witness_for_triv nat_plus_wf istype-nat real_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma rinv_wf2 itermSubtract_wf itermMultiply_wf req_weakening req_functionality rmul_functionality int-rdiv-req req_transitivity rinv-mul-as-rdiv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt hypothesis applyEquality sqequalRule natural_numberEquality inhabitedIsType independent_functionElimination setElimination rename dependent_set_memberEquality_alt productElimination imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache addEquality equalityIstype equalityTransitivity equalitySymmetry closedConclusion inrFormation_alt imageMemberEquality baseClosed functionIsTypeImplies isectIsTypeImplies applyLambdaEquality

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].
    ((|x|  \mleq{}  (r1/r(4)))  {}\mRightarrow{}  1-approx(\mSigma{}\{(x\^{}i)/(i)!  |  0\mleq{}i\mleq{}k\};N;rexp-approx(x;k;N)))



Date html generated: 2019_10_29-AM-10_39_09
Last ObjectModification: 2019_02_03-PM-10_05_46

Theory : reals


Home Index