Nuprl Lemma : rexp-approx-property
∀[x:ℝ]. ∀[k:ℕ]. ∀[N:ℕ+].  ((|x| ≤ (r1/r(4))) 
⇒ 1-approx(Σ{(x^i)/(i)! | 0≤i≤k};N;rexp-approx(x;k;N)))
Proof
Definitions occuring in Statement : 
rexp-approx: rexp-approx(x;k;N)
, 
ireal-approx: j-approx(x;M;z)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rnexp: x^k1
, 
int-rdiv: (a)/k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
fact: (n)!
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
rexp-approx: rexp-approx(x;k;N)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
ireal-approx: j-approx(x;M;z)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
poly-approx-property, 
int-rdiv_wf, 
fact_wf, 
nat_plus_inc_int_nzero, 
int-to-real_wf, 
rsum_functionality, 
rmul_wf, 
int_seg_properties, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
rnexp_wf, 
int_seg_wf, 
ireal-approx_functionality, 
rexp-approx_wf, 
rsum_wf, 
rleq_wf, 
rabs_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
le_witness_for_triv, 
nat_plus_wf, 
istype-nat, 
real_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
req_weakening, 
req_functionality, 
rmul_functionality, 
int-rdiv-req, 
req_transitivity, 
rinv-mul-as-rdiv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
hypothesis, 
applyEquality, 
sqequalRule, 
natural_numberEquality, 
inhabitedIsType, 
independent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
addEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
isectIsTypeImplies, 
applyLambdaEquality
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].
    ((|x|  \mleq{}  (r1/r(4)))  {}\mRightarrow{}  1-approx(\mSigma{}\{(x\^{}i)/(i)!  |  0\mleq{}i\mleq{}k\};N;rexp-approx(x;k;N)))
Date html generated:
2019_10_29-AM-10_39_09
Last ObjectModification:
2019_02_03-PM-10_05_46
Theory : reals
Home
Index