Nuprl Lemma : rsub-rmin-rleq-rabs

[a,b:ℝ].  ((b rmin(a;b)) ≤ |a b|)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rmin: rmin(x;y) rsub: y real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B real: prop: rsub: y rabs: |x| rmin: rmin(x;y) rminus: -(x) radd: b reg-seq-list-add: reg-seq-list-add(L) accelerate: accelerate(k;f) uimplies: supposing a nat_plus: + cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) cons: [a b] nil: [] it: less_than: a < b squash: T less_than': less_than'(a;b) true: True has-value: (a)↓ nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} nat: bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_lower: {...i} ge: i ≥ 
Lemmas referenced :  rleq-iff4 rsub_wf rmin_wf rabs_wf nat_plus_wf less_than'_wf real_wf value-type-has-value int-value-type mul_nat_plus less_than_wf imin_wf equal_wf ifthenelse_wf le_int_wf subtype_base_sq int_subtype_base equal-wf-base true_wf absval_wf nat_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot le_wf squash_wf add_functionality_wrt_eq minus_functionality_wrt_eq imin_unfold iff_weakening_equal nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermConstant_wf itermVar_wf itermMinus_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_wf decidable__le div_2_to_1 intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma div_bounds_1 divide_wf absval-minus absval_pos div_bounds_2 le_weakening2 decidable__lt nat_properties intformless_wf int_formula_prop_less_lemma add_nat_wf false_wf add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination lambdaFormation sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination callbyvalueReduce sqleReflexivity intEquality independent_isectElimination multiplyEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed addEquality addLevel instantiate cumulativity divideEquality unionElimination equalityElimination dependent_pairFormation promote_hyp imageElimination universeEquality int_eqEquality voidEquality computeAll applyLambdaEquality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[a,b:\mBbbR{}].    ((b  -  rmin(a;b))  \mleq{}  |a  -  b|)



Date html generated: 2017_10_03-AM-08_26_50
Last ObjectModification: 2017_07_28-AM-07_24_35

Theory : reals


Home Index