Nuprl Lemma : rsub-rmin-rleq-rabs
∀[a,b:ℝ].  ((b - rmin(a;b)) ≤ |a - b|)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
rmin: rmin(x;y)
, 
rsub: x - y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
rsub: x - y
, 
rabs: |x|
, 
rmin: rmin(x;y)
, 
rminus: -(x)
, 
radd: a + b
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
accelerate: accelerate(k;f)
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L)
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
has-value: (a)↓
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat: ℕ
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
int_lower: {...i}
, 
ge: i ≥ j 
Lemmas referenced : 
rleq-iff4, 
rsub_wf, 
rmin_wf, 
rabs_wf, 
nat_plus_wf, 
less_than'_wf, 
real_wf, 
value-type-has-value, 
int-value-type, 
mul_nat_plus, 
less_than_wf, 
imin_wf, 
equal_wf, 
ifthenelse_wf, 
le_int_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
absval_wf, 
nat_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
squash_wf, 
add_functionality_wrt_eq, 
minus_functionality_wrt_eq, 
imin_unfold, 
iff_weakening_equal, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
decidable__le, 
div_2_to_1, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
div_bounds_1, 
divide_wf, 
absval-minus, 
absval_pos, 
div_bounds_2, 
le_weakening2, 
decidable__lt, 
nat_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
add_nat_wf, 
false_wf, 
add-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
callbyvalueReduce, 
sqleReflexivity, 
intEquality, 
independent_isectElimination, 
multiplyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
addEquality, 
addLevel, 
instantiate, 
cumulativity, 
divideEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
imageElimination, 
universeEquality, 
int_eqEquality, 
voidEquality, 
computeAll, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[a,b:\mBbbR{}].    ((b  -  rmin(a;b))  \mleq{}  |a  -  b|)
Date html generated:
2017_10_03-AM-08_26_50
Last ObjectModification:
2017_07_28-AM-07_24_35
Theory : reals
Home
Index