Nuprl Lemma : sqs-rneq-or
∀x,y:ℝ.  SqStable(x ≠ r0 ∨ y ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
int-to-real: r(n), 
real: ℝ, 
sq_stable: SqStable(P), 
all: ∀x:A. B[x], 
or: P ∨ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
member: t ∈ T, 
prop: ℙ, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
has-value: (a)↓, 
real: ℝ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
nat: ℕ, 
int_upper: {i...}, 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
int-to-real: r(n), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
cand: A c∧ B, 
le: A ≤ B, 
pi1: fst(t), 
pi2: snd(t), 
gt: i > j
Lemmas referenced : 
le_wf, 
equal-wf-base-T, 
product_subtype_base, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
equal-wf-base, 
bool_wf, 
find-ge-val_wf, 
product-value-type, 
bor_wf, 
lt_int_wf, 
absval_wf, 
int_upper_properties, 
istype-int_upper, 
set-value-type, 
equal_wf, 
squash_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rless-iff4, 
subtype_rel_sets_simple, 
less_than_wf, 
decidable__le, 
spread_wf, 
nat_plus_properties, 
eqtt_to_assert, 
assert_wf, 
istype-assert, 
mul-commutes, 
mul-swap, 
mul-associates, 
zero-mul, 
add-commutes, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_lt_int, 
zero-add, 
absval_unfold, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
istype-top, 
add-is-int-iff, 
itermMinus_wf, 
int_term_value_minus_lemma, 
false_wf, 
true_wf, 
absval_pos, 
istype-le, 
subtype_rel_self, 
iff_weakening_equal, 
rless_wf, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
le-add-cancel, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
absval_lbound, 
intformor_wf, 
int_formula_prop_or_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productEquality, 
intEquality, 
thin, 
setEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_isectElimination, 
callbyvalueReduce, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
independent_pairEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
cutEval, 
equalityIstype, 
unionEquality, 
functionIsType, 
sqequalBase, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
pointwiseFunctionality, 
universeEquality, 
dependent_set_memberFormation_alt, 
addEquality, 
multiplyEquality, 
applyLambdaEquality
Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0)
Date html generated:
2019_10_29-AM-09_35_58
Last ObjectModification:
2019_01_09-PM-05_13_38
Theory : reals
Home
Index