Nuprl Lemma : Legendre-roots-unique
∀[n:ℕ]. ∀[z:ℕn ⟶ ℝ].
  (∀[i:ℕn]. ((z i) = Legendre-root(n;i))) supposing 
     ((∀i:ℕn. (Legendre(n;z i) = r0)) and 
     (∀i:ℕn - 1. ((z i) < (z (i + 1)))))
Proof
Definitions occuring in Statement : 
Legendre-root: Legendre-root(n;i), 
Legendre: Legendre(n;x), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
top: Top, 
implies: P ⇒ Q, 
nat: ℕ, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
uiff: uiff(P;Q), 
subtract: n - m, 
rneq: x ≠ y, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nat_plus: ℕ+, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
real: ℝ, 
sq_stable: SqStable(P), 
squash: ↓T, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
Legendre-rpolynomial, 
req_witness, 
Legendre-root_wf, 
member_rooint_lemma, 
istype-void, 
int_seg_wf, 
req_wf, 
Legendre_wf, 
int-to-real_wf, 
subtract_wf, 
rless_wf, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
add-member-int_seg2, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
real_wf, 
istype-nat, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
rdiv_wf, 
doublefact_wf, 
fact_wf, 
rless-int, 
nat_plus_properties, 
rless-int-fractions2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rless_functionality, 
req_weakening, 
rpolynomial_wf, 
rpolynomial-complete-roots-unique, 
iff_weakening_uiff, 
req_functionality, 
Legendre-roots-rless, 
sq_stable__less_than, 
sq_stable__req, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
applyEquality, 
hypothesis, 
lambdaEquality_alt, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
natural_numberEquality, 
because_Cache, 
isectIsTypeImplies, 
functionIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
productIsType, 
closedConclusion, 
addEquality, 
multiplyEquality, 
inrFormation_alt, 
applyLambdaEquality, 
lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[z:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}].
    (\mforall{}[i:\mBbbN{}n].  ((z  i)  =  Legendre-root(n;i)))  supposing 
          ((\mforall{}i:\mBbbN{}n.  (Legendre(n;z  i)  =  r0))  and 
          (\mforall{}i:\mBbbN{}n  -  1.  ((z  i)  <  (z  (i  +  1)))))
Date html generated:
2019_10_31-AM-06_20_23
Last ObjectModification:
2019_01_19-PM-01_10_28
Theory : reals_2
Home
Index