Nuprl Lemma : partition-sum-radd
∀I:Interval
(icompact(I)
⇒ (∀f,g:I ⟶ℝ. ∀p:partition(I). ∀y:partition-choice(full-partition(I;p)).
(S(λx.((f x) + (g x));full-partition(I;p)) = (S(f;full-partition(I;p)) + S(g;full-partition(I;p))))))
Proof
Definitions occuring in Statement :
partition-sum: S(f;p)
,
partition-choice: partition-choice(p)
,
full-partition: full-partition(I;p)
,
partition: partition(I)
,
icompact: icompact(I)
,
rfun: I ⟶ℝ
,
interval: Interval
,
req: x = y
,
radd: a + b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
lambda: λx.A[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
partition-sum: S(f;p)
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
prop: ℙ
,
partition: partition(I)
,
full-partition: full-partition(I;p)
,
top: Top
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
and: P ∧ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
so_lambda: λ2x.t[x]
,
rfun: I ⟶ℝ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
uiff: uiff(P;Q)
,
guard: {T}
,
so_apply: x[s]
,
icompact: icompact(I)
,
rev_uimplies: rev_uimplies(P;Q)
,
less_than: a < b
,
pointwise-req: x[k] = y[k] for k ∈ [n,m]
Lemmas referenced :
partition-choice-indep-funtype,
int_seg_wf,
length_wf,
real_wf,
i-member_wf,
equal_wf,
partition-choice_wf,
full-partition_wf,
partition_wf,
rfun_wf,
icompact_wf,
interval_wf,
length_of_cons_lemma,
length_nil,
non_neg_length,
nil_wf,
length_cons,
right-endpoint_wf,
cons_wf,
append_wf,
length_append,
subtype_rel_list,
top_wf,
length-append,
length_of_nil_lemma,
decidable__equal_int,
satisfiable-full-omega-tt,
intformnot_wf,
intformeq_wf,
itermAdd_wf,
itermVar_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
rsum_wf,
subtract_wf,
rmul_wf,
radd_wf,
decidable__lt,
add-is-int-iff,
intformand_wf,
intformless_wf,
itermSubtract_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_subtract_lemma,
false_wf,
lelt_wf,
rsub_wf,
select_wf,
int_seg_properties,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
req_functionality,
req_weakening,
req_inversion,
rsum_linearity1,
rsum_functionality,
rmul-distrib2,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalRule,
cut,
hypothesisEquality,
applyEquality,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
independent_isectElimination,
hypothesis,
functionEquality,
natural_numberEquality,
addEquality,
setElimination,
rename,
setEquality,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
lambdaEquality,
unionElimination,
productElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
computeAll,
functionExtensionality,
dependent_set_memberEquality,
independent_pairFormation,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
baseClosed
Latex:
\mforall{}I:Interval
(icompact(I)
{}\mRightarrow{} (\mforall{}f,g:I {}\mrightarrow{}\mBbbR{}. \mforall{}p:partition(I). \mforall{}y:partition-choice(full-partition(I;p)).
(S(\mlambda{}x.((f x) + (g x));full-partition(I;p))
= (S(f;full-partition(I;p)) + S(g;full-partition(I;p))))))
Date html generated:
2016_10_26-PM-00_01_06
Last ObjectModification:
2016_09_12-PM-05_37_33
Theory : reals_2
Home
Index