Nuprl Lemma : rcos-nonneg
∀x:{x:ℝ| x ∈ [-(π/2), π/2]} . (r0 ≤ rcos(x))
Proof
Definitions occuring in Statement :
halfpi: π/2
,
rcos: rcos(x)
,
rccint: [l, u]
,
i-member: r ∈ I
,
rleq: x ≤ y
,
rminus: -(x)
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
prop: ℙ
,
nat_plus: ℕ+
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_stable: SqStable(P)
,
cand: A c∧ B
,
top: Top
,
rsub: x - y
,
rev_uimplies: rev_uimplies(P;Q)
,
uiff: uiff(P;Q)
,
rge: x ≥ y
,
not: ¬A
,
false: False
,
le: A ≤ B
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
Lemmas referenced :
rless-cases,
int-to-real_wf,
rdiv_wf,
rless-int,
rless_wf,
rless-int-fractions2,
less_than_wf,
set_wf,
real_wf,
i-member_wf,
rccint_wf,
rminus_wf,
halfpi_wf,
rleq_wf,
sq_stable__rleq,
rleq_weakening_rless,
member_rccint_lemma,
rcos-nonneg-upto-half-pi,
rless-int-fractions3,
rminus-zero,
radd_functionality,
radd_comm,
req_weakening,
radd-zero-both,
rabs_functionality,
rless_functionality,
radd_wf,
rabs_wf,
rabs-rless-iff,
rminus-int,
true_wf,
squash_wf,
rmul-rdiv-cancel,
uiff_transitivity2,
rmul_comm,
rminus_functionality,
rmul_over_rminus,
rmul-rdiv-cancel2,
req_functionality,
uiff_transitivity,
rmul_wf,
req_wf,
rmul_preserves_req,
rleq_weakening,
rless_transitivity2,
rabs-difference-rcos-rleq,
rcos0,
rsub_functionality,
rleq_functionality,
rleq_weakening_equal,
rleq_functionality_wrt_implies,
rcos_wf,
rsub_wf,
rabs-difference-bound-rleq,
radd-int,
uiff_transitivity3,
rmul-one-both,
rmul-distrib,
req_transitivity,
rmul-int,
false_wf,
rleq-int,
rmul_preserves_rleq,
req_inversion,
rcos-rminus,
rminus_functionality_wrt_rleq,
real_term_polynomial,
itermSubtract_wf,
itermConstant_wf,
itermMinus_wf,
real_term_value_const_lemma,
real_term_value_sub_lemma,
real_term_value_minus_lemma,
req-iff-rsub-is-0,
rleq-implies-rleq,
itermVar_wf,
real_term_value_var_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
natural_numberEquality,
hypothesis,
independent_isectElimination,
sqequalRule,
inrFormation,
because_Cache,
productElimination,
independent_functionElimination,
independent_pairFormation,
imageMemberEquality,
hypothesisEquality,
baseClosed,
dependent_set_memberEquality,
multiplyEquality,
setElimination,
rename,
unionElimination,
lambdaEquality,
productEquality,
imageElimination,
voidEquality,
voidElimination,
isect_memberEquality,
minusEquality,
levelHypothesis,
addLevel,
equalitySymmetry,
equalityTransitivity,
applyEquality,
addEquality,
computeAll,
intEquality,
int_eqEquality
Latex:
\mforall{}x:\{x:\mBbbR{}| x \mmember{} [-(\mpi{}/2), \mpi{}/2]\} . (r0 \mleq{} rcos(x))
Date html generated:
2017_10_04-PM-10_25_29
Last ObjectModification:
2017_07_28-AM-08_49_23
Theory : reals_2
Home
Index