Nuprl Lemma : C_Array-elem_vs_DVALp
∀store:C_STOREp(). ∀ctyp:C_TYPE(). ∀env:C_TYPE_env(). ∀dval:C_DVALUEp(). ∀n:ℤ.
(C_STOREp-welltyped(env;store)
⇒ (↑C_Array?(ctyp))
⇒ (0 ≤ n)
⇒ n < C_Array-length(ctyp)
⇒ (↑(C_TYPE_vs_DVALp(env;ctyp) dval))
⇒ (↑(C_TYPE_vs_DVALp(env;C_Array-elems(ctyp)) (DVp_Array-arr(dval) (DVp_Array-lower(dval) + n)))))
Proof
Definitions occuring in Statement :
C_STOREp-welltyped: C_STOREp-welltyped(env;store)
,
C_STOREp: C_STOREp()
,
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp)
,
DVp_Array-arr: DVp_Array-arr(v)
,
DVp_Array-lower: DVp_Array-lower(v)
,
C_DVALUEp: C_DVALUEp()
,
C_TYPE_env: C_TYPE_env()
,
C_Array-elems: C_Array-elems(v)
,
C_Array-length: C_Array-length(v)
,
C_Array?: C_Array?(v)
,
C_TYPE: C_TYPE()
,
assert: ↑b
,
less_than: a < b
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
C_Void: C_Void()
,
C_Array-length: C_Array-length(v)
,
pi2: snd(t)
,
C_Array?: C_Array?(v)
,
pi1: fst(t)
,
assert: ↑b
,
bfalse: ff
,
C_Array-elems: C_Array-elems(v)
,
false: False
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
bnot: ¬bb
,
C_Int: C_Int()
,
C_Struct: C_Struct(fields)
,
C_Array: C_Array(length;elems)
,
C_Pointer: C_Pointer(to)
,
nat: ℕ
,
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp)
,
C_TYPE_ind: C_TYPE_ind,
DVp_Null: DVp_Null(x)
,
DVp_Array?: DVp_Array?(v)
,
DVp_Array-lower: DVp_Array-lower(v)
,
DVp_Array-upper: DVp_Array-upper(v)
,
DVp_Array-arr: DVp_Array-arr(v)
,
DVp_Int: DVp_Int(int)
,
DVp_Pointer: DVp_Pointer(ptr)
,
DVp_Array: DVp_Array(lower;upper;arr)
,
DVp_Struct: DVp_Struct(lbls;struct)
,
let: let,
band: p ∧b q
,
le: A ≤ B
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
l_all: (∀x∈L.P[x])
Lemmas referenced :
select-upto,
length_upto,
assert-bl-all,
assert_of_band,
iff_weakening_uiff,
iff_transitivity,
l_all_wf2,
int_subtype_base,
equal-wf-T-base,
lelt_wf,
int_formula_prop_eq_lemma,
int_formula_prop_less_lemma,
intformeq_wf,
intformless_wf,
decidable__lt,
int_formula_prop_wf,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_term_value_subtract_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermConstant_wf,
itermVar_wf,
itermSubtract_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_properties,
add-member-int_seg1,
l_member_wf,
upto_wf,
int_seg_wf,
bl-all_wf,
assert_of_eq_int,
subtract_wf,
eq_int_wf,
C_DVALUEp-ext,
C_STOREp_wf,
C_TYPE_wf,
C_TYPE_env_wf,
C_DVALUEp_wf,
C_STOREp-welltyped_wf,
C_Array?_wf,
le_wf,
nat_wf,
C_Array-length_wf,
less_than_wf,
C_TYPE_vs_DVALp_wf,
assert_wf,
neg_assert_of_eq_atom,
assert-bnot,
bool_subtype_base,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
it_wf,
unit_subtype_base,
atom_subtype_base,
subtype_base_sq,
assert_of_eq_atom,
eqtt_to_assert,
bool_wf,
eq_atom_wf,
C_TYPE-ext
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
promote_hyp,
sqequalHypSubstitution,
productElimination,
thin,
hypothesis_subsumption,
hypothesis,
hypothesisEquality,
applyEquality,
sqequalRule,
isectElimination,
tokenEquality,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
instantiate,
cumulativity,
atomEquality,
dependent_functionElimination,
independent_functionElimination,
because_Cache,
voidElimination,
dependent_pairFormation,
equalityEquality,
lambdaEquality,
setElimination,
rename,
natural_numberEquality,
intEquality,
dependent_set_memberEquality,
independent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidEquality,
computeAll,
setEquality,
productEquality,
baseApply,
closedConclusion,
baseClosed
Latex:
\mforall{}store:C\_STOREp(). \mforall{}ctyp:C\_TYPE(). \mforall{}env:C\_TYPE\_env(). \mforall{}dval:C\_DVALUEp(). \mforall{}n:\mBbbZ{}.
(C\_STOREp-welltyped(env;store)
{}\mRightarrow{} (\muparrow{}C\_Array?(ctyp))
{}\mRightarrow{} (0 \mleq{} n)
{}\mRightarrow{} n < C\_Array-length(ctyp)
{}\mRightarrow{} (\muparrow{}(C\_TYPE\_vs\_DVALp(env;ctyp) dval))
{}\mRightarrow{} (\muparrow{}(C\_TYPE\_vs\_DVALp(env;C\_Array-elems(ctyp))
(DVp\_Array-arr(dval) (DVp\_Array-lower(dval) + n)))))
Date html generated:
2016_05_16-AM-08_51_42
Last ObjectModification:
2016_01_17-AM-09_43_38
Theory : C-semantics
Home
Index