Nuprl Lemma : bounded-decidable-nset-finite

K:Type. ((K ⊆r ℕ (∀l:ℕ((l ∈ K) ∨ (l ∈ K))))  (∀B:ℕ((∀k:K. (k ≤ B))  finite(K))))


Proof




Definitions occuring in Statement :  finite: finite(T) nat: subtype_rel: A ⊆B le: A ≤ B all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q member: t ∈ T universe: Type
Definitions unfolded in proof :  l_member: (x ∈ l) true: True cand: c∧ B squash: T less_than: a < b bfalse: ff btrue: tt ifthenelse: if then else fi  assert: b less_than': less_than'(a;b) isl: isl(x) prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} false: False not: ¬A so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q uimplies: supposing a nat: guard: {T} subtype_rel: A ⊆B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  select_wf length_wf change-equality-type subtype-base-respects-equality member_filter no_repeats-subtype no_repeats_upto int_seg_properties no_repeats_filter l_member_wf no_repeats_wf istype-assert istype-true assert_wf istype-false int_seg_subtype_nat int_seg_wf subtype_rel_list upto_wf bfalse_wf btrue_wf filter_type decidable__le member_upto istype-less_than int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties zero-le-nat istype-universe subtype_rel_wf istype-void int_subtype_base istype-int le_wf set_subtype_base istype-nat nat_wf subtype_rel_transitivity istype-le finite-iff-listable
Rules used in proof :  promote_hyp imageElimination Error :setIsType,  setEquality equalityTransitivity functionExtensionality Error :productIsType,  voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation unionElimination addEquality dependent_functionElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  universeEquality instantiate equalitySymmetry sqequalBase because_Cache natural_numberEquality Error :equalityIstype,  Error :unionIsType,  independent_isectElimination intEquality Error :inhabitedIsType,  rename setElimination Error :lambdaEquality_alt,  applyEquality Error :universeIsType,  Error :functionIsType,  sqequalRule independent_functionElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type.  ((K  \msubseteq{}r  \mBbbN{})  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K))))  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  ((\mforall{}k:K.  (k  \mleq{}  B))  {}\mRightarrow{}  finite(K))))



Date html generated: 2019_06_20-PM-03_02_18
Last ObjectModification: 2019_06_13-PM-03_57_08

Theory : continuity


Home Index