Nuprl Lemma : bounded-decidable-nset-finite
∀K:Type. ((K ⊆r ℕ) 
⇒ (∀l:ℕ. ((l ∈ K) ∨ (¬(l ∈ K)))) 
⇒ (∀B:ℕ. ((∀k:K. (k ≤ B)) 
⇒ finite(K))))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
l_member: (x ∈ l)
, 
true: True
, 
cand: A c∧ B
, 
squash: ↓T
, 
less_than: a < b
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
less_than': less_than'(a;b)
, 
isl: isl(x)
, 
prop: ℙ
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
false: False
, 
not: ¬A
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
nat: ℕ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
select_wf, 
length_wf, 
change-equality-type, 
subtype-base-respects-equality, 
member_filter, 
no_repeats-subtype, 
no_repeats_upto, 
int_seg_properties, 
no_repeats_filter, 
l_member_wf, 
no_repeats_wf, 
istype-assert, 
istype-true, 
assert_wf, 
istype-false, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_list, 
upto_wf, 
bfalse_wf, 
btrue_wf, 
filter_type, 
decidable__le, 
member_upto, 
istype-less_than, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
zero-le-nat, 
istype-universe, 
subtype_rel_wf, 
istype-void, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
istype-nat, 
nat_wf, 
subtype_rel_transitivity, 
istype-le, 
finite-iff-listable
Rules used in proof : 
promote_hyp, 
imageElimination, 
Error :setIsType, 
setEquality, 
equalityTransitivity, 
functionExtensionality, 
Error :productIsType, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
addEquality, 
dependent_functionElimination, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
universeEquality, 
instantiate, 
equalitySymmetry, 
sqequalBase, 
because_Cache, 
natural_numberEquality, 
Error :equalityIstype, 
Error :unionIsType, 
independent_isectElimination, 
intEquality, 
Error :inhabitedIsType, 
rename, 
setElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :universeIsType, 
Error :functionIsType, 
sqequalRule, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}K:Type.  ((K  \msubseteq{}r  \mBbbN{})  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K))))  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  ((\mforall{}k:K.  (k  \mleq{}  B))  {}\mRightarrow{}  finite(K))))
Date html generated:
2019_06_20-PM-03_02_18
Last ObjectModification:
2019_06_13-PM-03_57_08
Theory : continuity
Home
Index