Nuprl Lemma : length-minus-polynom

[n:ℕ+]. ∀[p:polyform(n)].  (||minus-polynom(n;p)|| ||p|| ∈ ℤ)


Proof




Definitions occuring in Statement :  minus-polynom: minus-polynom(n;p) polyform: polyform(n) length: ||as|| nat_plus: + uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T polyform: polyform(n) subtype_rel: A ⊆B nat_plus: + prop: all: x:A. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bfalse: ff satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top minus-polynom: minus-polynom(n;p) nat: decidable: Dec(P)
Lemmas referenced :  polyform_wf nat_plus_subtype_nat nat_plus_wf eq_int_wf assert_wf bnot_wf not_wf equal-wf-T-base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf decidable__le intformnot_wf intformle_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf minus-polynom_wf polyform-value-type map_length map-rev-sq-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis extract_by_obid isectElimination thin hypothesisEquality applyEquality isect_memberEquality axiomEquality because_Cache setElimination rename natural_numberEquality equalityTransitivity equalitySymmetry intEquality baseClosed dependent_functionElimination unionElimination instantiate cumulativity independent_isectElimination independent_functionElimination productElimination independent_pairFormation lambdaFormation impliesFunctionality dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality computeAll int_eqReduceFalseSq dependent_set_memberEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:polyform(n)].    (||minus-polynom(n;p)||  =  ||p||)



Date html generated: 2017_09_29-PM-06_00_31
Last ObjectModification: 2017_05_03-PM-04_47_18

Theory : integer!polynomials


Home Index