Nuprl Lemma : length-minus-polynom
∀[n:ℕ+]. ∀[p:polyform(n)].  (||minus-polynom(n;p)|| = ||p|| ∈ ℤ)
Proof
Definitions occuring in Statement : 
minus-polynom: minus-polynom(n;p)
, 
polyform: polyform(n)
, 
length: ||as||
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
polyform: polyform(n)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
minus-polynom: minus-polynom(n;p)
, 
nat: ℕ
, 
decidable: Dec(P)
Lemmas referenced : 
polyform_wf, 
nat_plus_subtype_nat, 
nat_plus_wf, 
eq_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
minus-polynom_wf, 
polyform-value-type, 
map_length, 
map-rev-sq-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
setElimination, 
rename, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
baseClosed, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
impliesFunctionality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
int_eqReduceFalseSq, 
dependent_set_memberEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:polyform(n)].    (||minus-polynom(n;p)||  =  ||p||)
Date html generated:
2017_09_29-PM-06_00_31
Last ObjectModification:
2017_05_03-PM-04_47_18
Theory : integer!polynomials
Home
Index