Nuprl Lemma : bl-exists-append
∀[L1,L2,P:Top].  ((∃x∈L1 @ L2.P[x])_b ~ (∃x∈L1.P[x])_b ∨b(∃x∈L2.P[x])_b)
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b, 
append: as @ bs, 
bor: p ∨bq, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bl-exists: (∃x∈L.P[x])_b, 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
prop: ℙ, 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
compose: f o g, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
strict4: strict4(F), 
has-value: (a)↓, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
reduce-append, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
top_wf, 
fun_exp0_lemma, 
strictness-apply, 
bottom-sqle, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
fun_exp_unroll, 
le_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
strictness-decide, 
lifting-strict-callbyvalue, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
lifting-strict-ispair, 
lifting-strict-spread, 
lifting-strict-decide, 
lifting-strict-isaxiom, 
bor_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lambdaFormation, 
sqequalSqle, 
fixpointLeast, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomSqleEquality, 
unionElimination, 
dependent_set_memberEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
sqequalAxiom, 
baseClosed, 
callbyvalueDecide, 
unionEquality, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqleRule, 
divergentSqle
Latex:
\mforall{}[L1,L2,P:Top].    ((\mexists{}x\mmember{}L1  @  L2.P[x])\_b  \msim{}  (\mexists{}x\mmember{}L1.P[x])\_b  \mvee{}\msubb{}(\mexists{}x\mmember{}L2.P[x])\_b)
Date html generated:
2017_04_17-AM-08_03_43
Last ObjectModification:
2017_02_27-PM-04_34_13
Theory : list_1
Home
Index