Nuprl Lemma : concat_map_upto
∀[T:Type]. ∀f:ℕ ⟶ (T List). ∀t,t':ℕ.  concat(map(f;upto(t))) @ (f t) ≤ concat(map(f;upto(t'))) supposing t < t'
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
iseg: l1 ≤ l2
, 
concat: concat(ll)
, 
map: map(f;as)
, 
append: as @ bs
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
nat: ℕ
, 
prop: ℙ
, 
top: Top
, 
concat: concat(ll)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
le_wf, 
upto_iseg, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
int_seg_subtype, 
iseg-map, 
upto_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
map_wf, 
concat_iseg, 
top_wf, 
subtype_rel_list, 
append_nil_sq, 
reduce_nil_lemma, 
concat-cons, 
map_nil_lemma, 
map_cons_lemma, 
concat_append, 
map_append_sq, 
upto_add_1, 
list_wf, 
nat_wf, 
less_than_wf, 
member-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
functionEquality, 
universeEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
because_Cache, 
natural_numberEquality, 
addEquality, 
cumulativity, 
independent_pairFormation, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  (T  List).  \mforall{}t,t':\mBbbN{}.
        concat(map(f;upto(t)))  @  (f  t)  \mleq{}  concat(map(f;upto(t')))  supposing  t  <  t'
Date html generated:
2016_05_14-PM-03_10_13
Last ObjectModification:
2016_01_15-AM-07_17_36
Theory : list_1
Home
Index