Nuprl Lemma : concat_map_upto

[T:Type]. ∀f:ℕ ⟶ (T List). ∀t,t':ℕ.  concat(map(f;upto(t))) (f t) ≤ concat(map(f;upto(t'))) supposing t < t'


Proof




Definitions occuring in Statement :  upto: upto(n) iseg: l1 ≤ l2 concat: concat(ll) map: map(f;as) append: as bs list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T nat: prop: top: Top concat: concat(ll) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  le_wf upto_iseg int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_subtype iseg-map upto_wf subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_wf concat_iseg top_wf subtype_rel_list append_nil_sq reduce_nil_lemma concat-cons map_nil_lemma map_cons_lemma concat_append map_append_sq upto_add_1 list_wf nat_wf less_than_wf member-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality independent_isectElimination hypothesis functionEquality universeEquality sqequalRule isect_memberEquality voidElimination voidEquality dependent_functionElimination applyEquality lambdaEquality because_Cache natural_numberEquality addEquality cumulativity independent_pairFormation independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll dependent_set_memberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  (T  List).  \mforall{}t,t':\mBbbN{}.
        concat(map(f;upto(t)))  @  (f  t)  \mleq{}  concat(map(f;upto(t')))  supposing  t  <  t'



Date html generated: 2016_05_14-PM-03_10_13
Last ObjectModification: 2016_01_15-AM-07_17_36

Theory : list_1


Home Index