Nuprl Lemma : flip-adjacent
∀n:ℕ. ∀i,j:ℕn.  ∃L:ℕn - 1 List. ((i, j) = reduce(λi,g. ((i, i + 1) o g);λx.x;L) ∈ (ℕn ⟶ ℕn))
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
reduce: reduce(f;k;as)
, 
list: T List
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
guard: {T}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda3, 
append: as @ bs
, 
compose: f o g
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
less_than: a < b
, 
flip: (i, j)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
istype-nat, 
equal_wf, 
exists_wf, 
le_wf, 
all_wf, 
primrec-wf2, 
add-member-int_seg2, 
reduce_wf, 
istype-less_than, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
flip_wf, 
compose_wf, 
list_wf, 
decidable__le, 
int_seg_wf, 
subtract_wf, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
subtract-add-cancel, 
nil_wf, 
cons_wf, 
append_wf, 
reduce_nil_lemma, 
reduce-append, 
reduce_cons_lemma, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
flip-conjugation1, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
decidable__equal_int, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
subtype_base_sq, 
list_subtype_base, 
equal-wf-base-T, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
ifthenelse_wf, 
flip_identity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
inhabitedIsType, 
setIsType, 
functionEquality, 
dependent_set_memberEquality_alt, 
closedConclusion, 
equalityIstype, 
productIsType, 
functionIsType, 
unionElimination, 
because_Cache, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
productElimination, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
addEquality, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
hyp_replacement, 
applyEquality, 
functionExtensionality_alt, 
equalityIsType1, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
intEquality, 
cumulativity, 
sqequalBase, 
baseApply, 
Error :memTop, 
functionExtensionality, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    \mexists{}L:\mBbbN{}n  -  1  List.  ((i,  j)  =  reduce(\mlambda{}i,g.  ((i,  i  +  1)  o  g);\mlambda{}x.x;L))
Date html generated:
2020_05_19-PM-09_44_10
Last ObjectModification:
2020_01_04-PM-08_18_51
Theory : list_1
Home
Index