Nuprl Lemma : flip-adjacent

n:ℕ. ∀i,j:ℕn.  ∃L:ℕList. ((i, j) reduce(λi,g. ((i, 1) g);λx.x;L) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  flip: (i, j) reduce: reduce(f;k;as) list: List compose: g int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] subtract: m uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k ge: i ≥  nat: int_seg: {i..j-} guard: {T} member: t ∈ T uall: [x:A]. B[x] implies:  Q so_apply: x[s1;s2;s3] so_lambda: so_lambda3 append: as bs compose: g true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) le: A ≤ B less_than: a < b flip: (i, j) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  istype-nat equal_wf exists_wf le_wf all_wf primrec-wf2 add-member-int_seg2 reduce_wf istype-less_than int_formula_prop_not_lemma intformnot_wf decidable__lt flip_wf compose_wf list_wf decidable__le int_seg_wf subtract_wf istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermConstant_wf itermVar_wf itermSubtract_wf intformle_wf intformand_wf full-omega-unsat nat_properties int_seg_properties subtract-add-cancel nil_wf cons_wf append_wf reduce_nil_lemma reduce-append reduce_cons_lemma list_ind_nil_lemma list_ind_cons_lemma flip-conjugation1 squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int int_subtype_base lelt_wf set_subtype_base subtype_base_sq list_subtype_base equal-wf-base-T eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int ifthenelse_wf flip_identity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis inhabitedIsType setIsType functionEquality dependent_set_memberEquality_alt closedConclusion equalityIstype productIsType functionIsType unionElimination because_Cache universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination productElimination hypothesisEquality rename setElimination natural_numberEquality isectElimination sqequalHypSubstitution thin addEquality equalitySymmetry equalityTransitivity applyLambdaEquality hyp_replacement applyEquality functionExtensionality_alt equalityIsType1 imageElimination instantiate universeEquality imageMemberEquality baseClosed intEquality cumulativity sqequalBase baseApply Error :memTop,  functionExtensionality equalityElimination promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    \mexists{}L:\mBbbN{}n  -  1  List.  ((i,  j)  =  reduce(\mlambda{}i,g.  ((i,  i  +  1)  o  g);\mlambda{}x.x;L))



Date html generated: 2020_05_19-PM-09_44_10
Last ObjectModification: 2020_01_04-PM-08_18_51

Theory : list_1


Home Index