Nuprl Lemma : le-l_sum

[T:Type]. ∀[f:T ⟶ ℕ]. ∀[L:T List]. ∀[t:T].  ((t ∈ L)  ((f t) ≤ l_sum(map(f;L))))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) l_member: (x ∈ l) map: map(f;as) list: List nat: uall: [x:A]. B[x] le: A ≤ B implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B or: P ∨ Q cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B iff: ⇐⇒ Q true: True rev_implies:  Q l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv list-cases null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse l_member_wf product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf cons_member map_cons_lemma l_sum_cons_lemma squash_wf true_wf l_sum_wf map_wf subtype_rel_self iff_weakening_equal cons_wf istype-nat list_wf istype-universe l_sum_nonneg non_neg_length nat_wf map_length int_seg_properties select_wf length_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  productElimination equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  unionElimination because_Cache promote_hyp hypothesis_subsumption Error :equalityIstype,  Error :dependent_set_memberEquality_alt,  instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase addEquality functionExtensionality imageMemberEquality Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[L:T  List].  \mforall{}[t:T].    ((t  \mmember{}  L)  {}\mRightarrow{}  ((f  t)  \mleq{}  l\_sum(map(f;L))))



Date html generated: 2019_06_20-PM-01_44_44
Last ObjectModification: 2019_02_23-PM-01_10_57

Theory : list_1


Home Index