Nuprl Lemma : sq_stable__polyform-lead-nonzero

n:ℕ. ∀p:polyform(n).  SqStable(polyform-lead-nonzero(n;p))


Proof




Definitions occuring in Statement :  polyform-lead-nonzero: polyform-lead-nonzero(n;p) polyform: polyform(n) nat: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  bfalse: ff rev_implies:  Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) squash: T less_than: a < b or: P ∨ Q decidable: Dec(P) so_apply: x[s] and: P ∧ Q top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  implies:  Q so_lambda: λ2x.t[x] prop: nat: uall: [x:A]. B[x] member: t ∈ T polyform-lead-nonzero: polyform-lead-nonzero(n;p) polyform: polyform(n) all: x:A. B[x]
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases le_wf int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermSubtract_wf intformle_wf intformnot_wf decidable__le subtract_wf length_wf equal-wf-T-base bnot_wf sq_stable__not hd_wf poly-zero_wf assert_wf not_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformand_wf satisfiable-full-omega-tt nat_properties less_than_wf sq_stable__all eq_int_wf nat_wf polyform_wf
Rules used in proof :  impliesFunctionality cumulativity instantiate productElimination imageElimination unionElimination dependent_set_memberEquality baseClosed independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality dependent_pairFormation independent_isectElimination functionEquality lambdaEquality equalitySymmetry equalityTransitivity because_Cache natural_numberEquality rename setElimination hypothesis hypothesisEquality thin isectElimination extract_by_obid introduction cut sqequalRule sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polyform(n).    SqStable(polyform-lead-nonzero(n;p))



Date html generated: 2017_04_17-AM-09_02_48
Last ObjectModification: 2017_04_13-PM-00_40_29

Theory : list_1


Home Index