Nuprl Lemma : exp-equal-minusone

[x:ℤ]. ∀[n:ℕ].  uiff(x^n (-1) ∈ ℤ;(x (-1) ∈ ℤ) ∧ ((n mod 2) 1 ∈ ℤ))


Proof




Definitions occuring in Statement :  exp: i^n modulus: mod n nat: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} top: Top ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False nat_plus: + le: A ≤ B iff: ⇐⇒ Q not: ¬A rev_implies:  Q less_than': less_than'(a;b) true: True subtract: m squash: T less_than: a < b ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b
Lemmas referenced :  equal-wf-T-base exp_wf2 equal-wf-base modulus_wf_int_mod subtype_rel_set int_mod_wf le_wf int-subtype-int_mod nat_wf decidable__equal_int subtype_base_sq int_subtype_base exp0_lemma nat_properties satisfiable-full-omega-tt intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf exp-assoced-one decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf assoced_wf squash_wf true_wf iff_weakening_equal neg_assoced assoced_elim equal_wf exp-one exp-minusone eq_int_wf assert_wf bnot_wf not_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot mod_bounds intformand_wf intformnot_wf itermVar_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma bool_cases_sqequal assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality extract_by_obid isectElimination intEquality hypothesisEquality baseClosed productEquality because_Cache applyEquality natural_numberEquality lambdaEquality independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename unionElimination instantiate cumulativity independent_functionElimination voidElimination voidEquality minusEquality dependent_pairFormation computeAll dependent_set_memberEquality lambdaFormation addEquality imageElimination imageMemberEquality universeEquality promote_hyp impliesFunctionality int_eqEquality equalityElimination

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    uiff(x\^{}n  =  (-1);(x  =  (-1))  \mwedge{}  ((n  mod  2)  =  1))



Date html generated: 2018_05_21-PM-01_06_27
Last ObjectModification: 2018_01_28-PM-02_02_17

Theory : num_thy_1


Home Index