Nuprl Lemma : orbit-size-divides-order

[T:Type]. ∀f:T ⟶ T. ∀n:ℕ.  ∀L:T List. ||L|| supposing orbit(T;f;L) supposing ∀x:T. ((f^n x) x ∈ T)


Proof




Definitions occuring in Statement :  divides: a orbit: orbit(T;f;L) length: ||as|| list: List fun_exp: f^n nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T orbit: orbit(T;f;L) and: P ∧ Q implies:  Q int_seg: {i..j-} nat: ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False less_than: a < b squash: T int_nzero: -o nequal: a ≠ b ∈  subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) divides: a le: A ≤ B less_than': less_than'(a;b) true: True guard: {T} iff: ⇐⇒ Q no_repeats: no_repeats(T;l) nat_plus: +
Lemmas referenced :  member-less_than length_wf no_repeats_witness orbit-iterates nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma istype-le istype-less_than decidable__equal_int remainder_wfa intformeq_wf int_formula_prop_eq_lemma length_wf_nat set_subtype_base le_wf int_subtype_base nequal_wf orbit_wf list_wf fun_exp_wf istype-nat istype-universe div_rem_sum false_wf int_term_value_add_lemma int_term_value_mul_lemma itermAdd_wf itermMultiply_wf multiply-is-int-iff add-is-int-iff equal_wf squash_wf true_wf select_wf istype-false subtype_rel_self iff_weakening_equal zero-add remainder_wf rem_bounds_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename productElimination independent_pairEquality extract_by_obid isectElimination natural_numberEquality independent_isectElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  setElimination independent_pairFormation unionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  imageElimination int_eqEquality Error :productIsType,  because_Cache equalityTransitivity equalitySymmetry Error :equalityIstype,  applyEquality intEquality baseClosed sqequalBase Error :functionIsType,  instantiate universeEquality closedConclusion multiplyEquality baseApply promote_hyp pointwiseFunctionality divideEquality imageMemberEquality applyLambdaEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.    \mforall{}L:T  List.  ||L||  |  n  supposing  orbit(T;f;L)  supposing  \mforall{}x:T.  ((f\^{}n  x)  =  x)



Date html generated: 2019_06_20-PM-02_20_41
Last ObjectModification: 2019_03_06-AM-10_53_46

Theory : num_thy_1


Home Index