Nuprl Lemma : orbit-iterates

[T:Type]. ∀[f:T ⟶ T]. ∀[L:T List].  ∀[i:ℕ||L||]. ∀[n:ℕ].  ((f^n L[i]) L[i rem ||L||] ∈ T) supposing orbit(T;f;L)


Proof




Definitions occuring in Statement :  orbit: orbit(T;f;L) select: L[n] length: ||as|| list: List fun_exp: f^n int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] remainder: rem m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a orbit: orbit(T;f;L) and: P ∧ Q nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q nat_plus: + cand: c∧ B true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) compose: g bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff less_than': less_than'(a;b)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than fun_exp0_lemma subtract-1-ge-0 istype-nat int_seg_wf length_wf orbit_wf list_wf istype-universe select_wf int_seg_properties decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt itermAdd_wf int_term_value_add_lemma istype-le rem_bounds_1 decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf squash_wf true_wf le_wf less_than_wf rem_base_case subtype_rel_self iff_weakening_equal subtype_base_sq int_subtype_base rem_add1 subtract_wf itermSubtract_wf int_term_value_subtract_lemma not_wf bnot_wf assert_wf equal-wf-base bool_wf eq_int_wf satisfiable-full-omega-tt fun_exp_unroll uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot false_wf equal-wf-T-base lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :functionIsType,  because_Cache instantiate universeEquality imageElimination unionElimination Error :dependent_set_memberEquality_alt,  addEquality applyEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productEquality cumulativity intEquality closedConclusion baseApply computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality lambdaFormation equalityElimination impliesFunctionality functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[L:T  List].
    \mforall{}[i:\mBbbN{}||L||].  \mforall{}[n:\mBbbN{}].    ((f\^{}n  L[i])  =  L[i  +  n  rem  ||L||])  supposing  orbit(T;f;L)



Date html generated: 2019_06_20-PM-01_38_00
Last ObjectModification: 2019_03_06-AM-11_06_13

Theory : list_1


Home Index