Nuprl Lemma : tsqrt_wf

[n:ℕ]. (tsqrt(n) ∈ ℕ)


Proof




Definitions occuring in Statement :  tsqrt: tsqrt(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tsqrt: tsqrt(n) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} sq_type: SQType(T)
Lemmas referenced :  isqrt_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat value-type-has-value nat_wf set-value-type le_wf int-value-type le_int_wf uiff_transitivity equal-wf-base bool_wf set_subtype_base int_subtype_base assert_wf eqtt_to_assert assert_of_le_int lt_int_wf less_than_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int decidable__equal_int subtype_base_sq intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma subtract_wf itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt multiplyEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry axiomEquality callbyvalueReduce intEquality addEquality because_Cache equalityElimination baseApply closedConclusion baseClosed applyEquality productElimination instantiate cumulativity applyLambdaEquality

Latex:
\mforall{}[n:\mBbbN{}].  (tsqrt(n)  \mmember{}  \mBbbN{})



Date html generated: 2020_05_19-PM-10_03_48
Last ObjectModification: 2019_11_22-AM-10_51_19

Theory : num_thy_1


Home Index