Nuprl Lemma : add-poly-lemma1
∀p,q:iMonomial() List. ∀m:iMonomial().
  ((∀i:ℕ||p||. ∀j:ℕi.  imonomial-less(p[j];p[i]))
  ⇒ (∀i:ℕ||q||. ∀j:ℕi.  imonomial-less(q[j];q[i]))
  ⇒ (0 < ||p|| ⇒ imonomial-less(m;p[0]))
  ⇒ (0 < ||q|| ⇒ imonomial-less(m;q[0]))
  ⇒ 0 < ||add-ipoly(p;q)||
  ⇒ imonomial-less(m;add-ipoly(p;q)[0]))
Proof
Definitions occuring in Statement : 
add-ipoly: add-ipoly(p;q), 
imonomial-less: imonomial-less(m1;m2), 
iMonomial: iMonomial(), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
less_than: a < b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
imonomial-le: imonomial-le(m1;m2), 
pi2: snd(t), 
imonomial-less: imonomial-less(m1;m2), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
pi1: fst(t), 
iMonomial: iMonomial(), 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
unit: Unit, 
bool: 𝔹, 
or: P ∨ Q, 
decidable: Dec(P), 
true: True, 
nat_plus: ℕ+, 
subtract: n - m, 
uiff: uiff(P;Q), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
bfalse: ff, 
cons: [a / b], 
has-value: (a)↓, 
less_than: a < b, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
so_apply: x[s1;s2], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
it: ⋅, 
nil: [], 
select: L[n], 
add-ipoly: Error :add-ipoly, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
so_apply: x[s], 
guard: {T}, 
squash: ↓T, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
int_seg: {i..j-}, 
prop: ℙ, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
int_nzero_wf, 
subtype_rel_self, 
sorted_wf, 
imonomial-less-transitive, 
nat_plus_wf, 
add_nat_plus, 
add-subtract-cancel, 
le-add-cancel, 
not-equal-2, 
select-cons-tl, 
true_wf, 
squash_wf, 
lelt_wf, 
le-add-cancel2, 
condition-implies-le, 
not-le-2, 
decidable__le, 
add-member-int_seg2, 
neg_assert_of_eq_int, 
assert_of_eq_int, 
eq_int_wf, 
int-value-type, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
eqtt_to_assert, 
bool_wf, 
imonomial-le_wf, 
decidable__lt, 
nat_properties, 
int_seg_properties, 
minus-one-mul-top, 
mul-commutes, 
mul-associates, 
mul-distributes, 
omega-shadow, 
not-lt-2, 
add-zero, 
zero-mul, 
zero-add, 
mul-distributes-right, 
two-mul, 
add-mul-special, 
add-swap, 
one-mul, 
minus-one-mul, 
minus-add, 
add-associates, 
le_reflexive, 
subtract_wf, 
add_functionality_wrt_le, 
less-iff-le, 
add-commutes, 
equal_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
nat_wf, 
length_wf_nat, 
non_neg_length, 
spread_cons_lemma, 
null_cons_lemma, 
length_of_cons_lemma, 
cons_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
null_nil_lemma, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
nil_wf, 
list-value-type, 
value-type-has-value, 
add-ipoly_wf1, 
false_wf, 
less_than_wf, 
le_weakening2, 
less_than_transitivity2, 
sq_stable__le, 
select_wf, 
imonomial-less_wf, 
length_wf, 
int_seg_wf, 
list_wf, 
all_wf, 
iMonomial_wf, 
list_induction
Rules used in proof : 
setEquality, 
productEquality, 
independent_pairEquality, 
hyp_replacement, 
int_eqReduceFalseSq, 
int_eqReduceTrueSq, 
cumulativity, 
instantiate, 
equalityElimination, 
unionElimination, 
dependent_set_memberEquality, 
minusEquality, 
multiplyEquality, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
intEquality, 
applyEquality, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
addEquality, 
callbyvalueReduce, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
dependent_functionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
rename, 
setElimination, 
hypothesisEquality, 
natural_numberEquality, 
functionEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}p,q:iMonomial()  List.  \mforall{}m:iMonomial().
    ((\mforall{}i:\mBbbN{}||p||.  \mforall{}j:\mBbbN{}i.    imonomial-less(p[j];p[i]))
    {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||q||.  \mforall{}j:\mBbbN{}i.    imonomial-less(q[j];q[i]))
    {}\mRightarrow{}  (0  <  ||p||  {}\mRightarrow{}  imonomial-less(m;p[0]))
    {}\mRightarrow{}  (0  <  ||q||  {}\mRightarrow{}  imonomial-less(m;q[0]))
    {}\mRightarrow{}  0  <  ||add-ipoly(p;q)||
    {}\mRightarrow{}  imonomial-less(m;add-ipoly(p;q)[0]))
Date html generated:
2017_04_14-AM-08_58_21
Last ObjectModification:
2017_04_03-AM-09_56_54
Theory : omega
Home
Index