Nuprl Lemma : tuple_wf
∀[L:Type List]. ∀[F:i:ℕ||L|| ⟶ L[i]]. ∀[n:{n:ℤ| n = ||L|| ∈ ℤ} ].  (tuple(n;i.F[i]) ∈ tuple-type(L))
Proof
Definitions occuring in Statement : 
tuple: tuple(n;i.F[i]), 
tuple-type: tuple-type(L), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
tuple: tuple(n;i.F[i]), 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
upto: upto(n), 
from-upto: [n, m), 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
bfalse: ff, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
cons: [a / b], 
colength: colength(L), 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
true: True, 
uiff: uiff(P;Q), 
assert: ↑b, 
btrue: tt, 
subtract: n - m, 
eq_int: (i =z j), 
bool: 𝔹, 
unit: Unit, 
bnot: ¬bb, 
compose: f o g, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list_wf, 
list-cases, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
tupletype_nil_lemma, 
map_nil_lemma, 
list_ind_nil_lemma, 
it_wf, 
product_subtype_list, 
spread_cons_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
decidable__lt, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_subtype_base, 
decidable__equal_int, 
length_of_cons_lemma, 
tupletype_cons_lemma, 
upto_decomp2, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
false_wf, 
map_cons_lemma, 
list_ind_cons_lemma, 
cons_wf, 
non_neg_length, 
set_wf, 
equal-wf-base-T, 
null-map, 
null-upto, 
decidable__assert, 
null_wf, 
null_nil_lemma, 
lelt_wf, 
null_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eq_int_wf, 
assert_of_eq_int, 
btrue_wf, 
not_assert_elim, 
and_wf, 
btrue_neq_bfalse, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
map-map, 
nil_wf, 
add-subtract-cancel, 
add-member-int_seg2, 
subtype_rel-equal, 
select-cons-tl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaFormation, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
functionEquality, 
productElimination, 
universeEquality, 
because_Cache, 
applyLambdaEquality, 
applyEquality, 
unionElimination, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
addEquality, 
imageElimination, 
imageMemberEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
functionExtensionality, 
equalityElimination, 
independent_pairEquality
Latex:
\mforall{}[L:Type  List].  \mforall{}[F:i:\mBbbN{}||L||  {}\mrightarrow{}  L[i]].  \mforall{}[n:\{n:\mBbbZ{}|  n  =  ||L||\}  ].    (tuple(n;i.F[i])  \mmember{}  tuple-type(L))
Date html generated:
2017_04_17-AM-09_29_13
Last ObjectModification:
2017_02_27-PM-05_29_50
Theory : tuples
Home
Index