Nuprl Lemma : list_split_iseg
∀[T:Type]
  ∀f:(T List) ⟶ 𝔹. ∀L1,L2:T List.
    (L1 ≤ L2
    
⇒ let LL1,X = list_split(f;L1) 
       in let LL2,Y = list_split(f;L2) 
          in ((LL1 = LL2 ∈ (T List List)) ∧ X ≤ Y)
             ∨ (∃Z:T List. ∃ZZ:T List List. (((LL1 @ [Z / ZZ]) = LL2 ∈ (T List List)) ∧ X ≤ Z)))
Proof
Definitions occuring in Statement : 
list_split: list_split(f;L)
, 
iseg: l1 ≤ l2
, 
append: as @ bs
, 
cons: [a / b]
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
squash: ↓T
, 
iseg: l1 ≤ l2
, 
exists: ∃x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
list_split: list_split(f;L)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
not: ¬A
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_split_wf, 
list_wf, 
set_wf, 
is_list_splitting_wf, 
equal_wf, 
iseg_wf, 
bool_wf, 
squash_wf, 
true_wf, 
append_wf, 
iff_weakening_equal, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
list_accum_wf, 
list-cases, 
null_nil_lemma, 
cons_wf, 
nil_wf, 
product_subtype_list, 
null_cons_lemma, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
last_induction, 
all_wf, 
or_wf, 
length_wf, 
exists_wf, 
length-append, 
list_accum_nil_lemma, 
iseg_weakening, 
and_wf, 
pi1_wf_top, 
subtype_rel_product, 
pi2_wf, 
list_accum_cons_lemma, 
null_wf3, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
assert_of_null, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
iseg_nil, 
length_wf_nat, 
nat_wf, 
nil_iseg, 
append_assoc, 
list_ind_cons_lemma, 
iseg_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
productEquality, 
sqequalRule, 
lambdaEquality, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
setEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
inlFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
impliesFunctionality, 
inrFormation
Latex:
\mforall{}[T:Type]
    \mforall{}f:(T  List)  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L1,L2:T  List.
        (L1  \mleq{}  L2
        {}\mRightarrow{}  let  LL1,X  =  list\_split(f;L1) 
              in  let  LL2,Y  =  list\_split(f;L2) 
                    in  ((LL1  =  LL2)  \mwedge{}  X  \mleq{}  Y)
                          \mvee{}  (\mexists{}Z:T  List.  \mexists{}ZZ:T  List  List.  (((LL1  @  [Z  /  ZZ])  =  LL2)  \mwedge{}  X  \mleq{}  Z)))
Date html generated:
2018_05_21-PM-08_05_14
Last ObjectModification:
2017_07_26-PM-05_41_11
Theory : general
Home
Index