Nuprl Lemma : split_tail_correct
∀[A:Type]. ∀[f:A ⟶ 𝔹]. ∀[L:A List].  (∀b∈snd(split_tail(L | ∀x.f[x])).↑f[b])
Proof
Definitions occuring in Statement : 
split_tail: split_tail(L | ∀x.f[x])
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
l_all: (∀x∈L.P[x])
, 
guard: {T}
, 
or: P ∨ Q
, 
split_tail: split_tail(L | ∀x.f[x])
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
pi2: snd(t)
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
less_than: a < b
, 
squash: ↓T
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
assert_witness, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list-cases, 
list_ind_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
split_tail_wf, 
istype-universe, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
list_ind_cons_lemma, 
nat_wf, 
list_wf, 
bool_wf, 
l_member_wf, 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
assert_wf, 
nil_wf, 
l_all_iff, 
l_all_cons, 
l_all_wf, 
list_ind_wf, 
cons_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIsType1, 
because_Cache, 
dependent_set_memberEquality_alt, 
applyEquality, 
imageElimination, 
instantiate, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
functionIsType, 
universeEquality, 
lambdaFormation, 
setEquality, 
cumulativity, 
functionExtensionality, 
lambdaEquality, 
voidEquality, 
setIsType, 
productEquality, 
independent_pairEquality, 
productIsType, 
equalityElimination
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    (\mforall{}b\mmember{}snd(split\_tail(L  |  \mforall{}x.f[x])).\muparrow{}f[b])
Date html generated:
2019_10_15-AM-10_54_49
Last ObjectModification:
2018_10_09-AM-10_28_13
Theory : list!
Home
Index