Nuprl Lemma : split_tail_correct

[A:Type]. ∀[f:A ⟶ 𝔹]. ∀[L:A List].  (∀b∈snd(split_tail(L | ∀x.f[x])).↑f[b])


Proof




Definitions occuring in Statement :  split_tail: split_tail(L | ∀x.f[x]) l_all: (∀x∈L.P[x]) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] pi2: snd(t) function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: l_all: (∀x∈L.P[x]) guard: {T} or: P ∨ Q split_tail: split_tail(L | ∀x.f[x]) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pi2: snd(t) cons: [a b] le: A ≤ B less_than': less_than'(a;b) so_apply: x[s] int_seg: {i..j-} so_lambda: λ2x.t[x] lelt: i ≤ j < k decidable: Dec(P) less_than: a < b squash: T colength: colength(L) nil: [] it: sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness intformeq_wf int_formula_prop_eq_lemma list-cases list_ind_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf select_wf int_seg_properties length_wf split_tail_wf istype-universe decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma list_ind_cons_lemma nat_wf list_wf bool_wf l_member_wf btrue_neq_bfalse member-implies-null-eq-bfalse btrue_wf null_nil_lemma assert_wf nil_wf l_all_iff l_all_cons l_all_wf list_ind_wf cons_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType equalityTransitivity equalitySymmetry applyLambdaEquality functionIsTypeImplies inhabitedIsType unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 because_Cache dependent_set_memberEquality_alt applyEquality imageElimination instantiate equalityIsType4 baseApply closedConclusion baseClosed intEquality functionIsType universeEquality lambdaFormation setEquality cumulativity functionExtensionality lambdaEquality voidEquality setIsType productEquality independent_pairEquality productIsType equalityElimination

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    (\mforall{}b\mmember{}snd(split\_tail(L  |  \mforall{}x.f[x])).\muparrow{}f[b])



Date html generated: 2019_10_15-AM-10_54_49
Last ObjectModification: 2018_10_09-AM-10_28_13

Theory : list!


Home Index