Nuprl Lemma : simple-swap-correct
∀[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)]. ∀[prog:A-map Unit].
  ∀i,j:ℕn.  simple-swap-specification(AType;n;simple-swap(array-model(AType);i;j);i;j)
Proof
Definitions occuring in Statement : 
simple-swap: simple-swap(AModel;i;j), 
simple-swap-specification: simple-swap-specification(AType;n;prog;i;j), 
A-map: A-map, 
array-model: array-model(AType), 
array: array{i:l}(Val;n), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
unit: Unit, 
apply: f a, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
simple-swap-specification: simple-swap-specification(AType;n;prog;i;j), 
simple-swap: simple-swap(AModel;i;j), 
simple-swap-test2: simple-swap-test2(AModel;prog;i;j;k), 
array-model: array-model(AType), 
A-return: A-return(AModel), 
A-fetch': A-fetch'(AModel), 
A-coerce: A-coerce(AModel), 
A-bind: A-bind(AModel), 
A-assign: A-assign(AModel), 
A-eval: A-eval(AModel), 
pi2: snd(t), 
pi1: fst(t), 
array-monad: array-monad(AType), 
M-return: M-return(Mnd), 
M-bind: M-bind(Mnd), 
let: let, 
mk_monad: mk_monad(M;return;bind), 
array: array{i:l}(Val;n), 
Arr: Arr(AType), 
idx: idx(AType), 
upd: upd(AType), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
int_seg: {i..j-}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
squash: ↓T, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
Arr_wf, 
int_seg_wf, 
assert_witness, 
A-eval_wf, 
bool_wf, 
A-map_wf, 
simple-swap-test2_wf, 
simple-swap_wf, 
unit_wf2, 
array_wf, 
nat_wf, 
assert_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
bimplies_wf, 
bnot_wf, 
eqff_to_assert, 
assert-bnot, 
neg_assert_of_eq_int, 
iff_transitivity, 
not_wf, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bnot, 
isect_wf, 
band_wf, 
assert_of_bimplies, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
equal-wf-T-base, 
int_subtype_base, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
uiff_transitivity, 
bool_cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
independent_functionElimination, 
isect_memberEquality, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
productEquality, 
independent_pairFormation, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality, 
int_eqEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].  \mforall{}[prog:A-map  Unit].
    \mforall{}i,j:\mBbbN{}n.    simple-swap-specification(AType;n;simple-swap(array-model(AType);i;j);i;j)
Date html generated:
2017_10_01-AM-08_44_34
Last ObjectModification:
2017_07_26-PM-04_30_15
Theory : monads
Home
Index