Nuprl Lemma : decidable__q-constraints2
∀k:ℕ. ∀A:(ℚ List × ℤ × (ℚ List)) List.  Dec(∃y:ℚ List [q-sat-constraints(k;A;y)])
Proof
Definitions occuring in Statement : 
q-sat-constraints: q-sat-constraints(k;A;y), 
rationals: ℚ, 
list: T List, 
nat: ℕ, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
q-sat-constraints: q-sat-constraints(k;A;y), 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
spreadn: spread3, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_exists: ∃x:A [B[x]], 
cand: A c∧ B, 
nat: ℕ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
q-constraints: q-constraints(k;A;y), 
l_all: (∀x∈L.P[x]), 
q-rel: q-rel(r;x), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
pi2: snd(t), 
pi1: fst(t), 
qsub: r - s, 
rev_implies: P ⇐ Q, 
label: ...$L... t, 
le: A ≤ B
Lemmas referenced : 
decidable__q-constraints-opt, 
list_wf, 
rationals_wf, 
nat_wf, 
qsub_wf, 
select?_wf, 
int-subtype-rationals, 
normalize-constraints_wf, 
map_wf, 
decidable_wf, 
squash_wf, 
true_wf, 
sq_exists_wf, 
q-constraints_wf, 
normalize-constraints-eq, 
iff_weakening_equal, 
equal_wf, 
length_wf, 
l_all_wf2, 
l_member_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
q-linear_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
qle_wf, 
qless_wf, 
not_wf, 
length-map, 
int_seg_wf, 
subtype_rel_list, 
top_wf, 
select_wf, 
int_seg_properties, 
itermConstant_wf, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
select-map, 
equal-wf-base-T, 
qadd_wf, 
qmul_wf, 
q-linear-times, 
q-linear-sum, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
qadd_preserves_qle, 
qadd_preserves_qless, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
qadd_comm_q, 
qadd_inv_assoc_q, 
mon_ident_q, 
less_than_wf, 
length-map-sq, 
lelt_wf, 
q-rel_wf, 
uiff_transitivity2, 
qinverse_q
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
productEquality, 
hypothesis, 
intEquality, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
functionEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
equalityElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
instantiate, 
setEquality, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality, 
minusEquality, 
baseApply, 
closedConclusion, 
impliesFunctionality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}A:(\mBbbQ{}  List  \mtimes{}  \mBbbZ{}  \mtimes{}  (\mBbbQ{}  List))  List.    Dec(\mexists{}y:\mBbbQ{}  List  [q-sat-constraints(k;A;y)])
Date html generated:
2018_05_22-AM-00_25_45
Last ObjectModification:
2017_07_26-PM-06_56_01
Theory : rationals
Home
Index