Nuprl Lemma : rat-int-part_wf
∀q:ℤ ⋃ (ℤ × ℤ-o). (rat-int-part(q) ∈ {p:ℤ × {r:ℚ| (0 ≤ r) ∧ r < 1} | let x,r = p in q = (x + r) ∈ ℚ} )
Proof
Definitions occuring in Statement : 
rat-int-part: rat-int-part(q), 
qle: r ≤ s, 
qless: r < s, 
qadd: r + s, 
rationals: ℚ, 
int_nzero: ℤ-o, 
b-union: A ⋃ B, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
spread: spread def, 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rat-int-part: rat-int-part(q), 
uall: ∀[x:A]. B[x], 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
and: P ∧ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
qdiv: (r/s), 
qinv: 1/r, 
qmul: r * s, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
btrue: tt, 
int_nzero: ℤ-o, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
sq_type: SQType(T), 
guard: {T}, 
bfalse: ff, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
it: ⋅, 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
rev_uimplies: rev_uimplies(P;Q), 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
nat_plus: ℕ+, 
le: A ≤ B, 
int_lower: {...i}, 
gt: i > j, 
ge: i ≥ j 
Lemmas referenced : 
b-union_wf, 
int_nzero_wf, 
qle_reflexivity, 
int-subtype-rationals, 
qless-int, 
qle_wf, 
qless_wf, 
mon_ident_q, 
equal-wf-base-T, 
rationals_wf, 
int_subtype_base, 
qadd_wf, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
set-valueall-type, 
nequal_wf, 
product-valueall-type, 
evalall-sqequal, 
set_subtype_base, 
subtype_base_sq, 
product_subtype_base, 
mul-commutes, 
one-mul, 
div_rem_sum, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
value-type-has-value, 
int-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
qmul-preserves-eq, 
qdiv_wf, 
qmul_wf, 
subtype_rel_set, 
int_nzero-rational, 
qmul-mul, 
int-equal-in-rationals, 
decidable__equal_int, 
itermMultiply_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
qmul_zero_qrng, 
qmul_comm_qrng, 
qadd_comm_q, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
lt_int_wf, 
assert_of_lt_int, 
le_int_wf, 
assert_of_le_int, 
le_wf, 
less_than_wf, 
rem_bounds_1, 
qdiv-non-neg1, 
qle-int, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
qmul_preserves_qless, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
qmul_one_qrng, 
qadd-add, 
rem_bounds_2, 
subtract_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rem_bounds_4, 
qmul_preserves_qle, 
qmul_over_minus_qrng, 
rem_bounds_3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
intEquality, 
productEquality, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
sqequalRule, 
isintReduceTrue, 
hypothesisEquality, 
dependent_set_memberEquality, 
independent_pairEquality, 
natural_numberEquality, 
applyEquality, 
independent_pairFormation, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
equalitySymmetry, 
spreadEquality, 
setElimination, 
rename, 
callbyvalueReduce, 
lambdaEquality, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
instantiate, 
cumulativity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
equalityTransitivity, 
remainderEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
divideEquality, 
promote_hyp, 
addEquality, 
multiplyEquality, 
universeEquality, 
minusEquality
Latex:
\mforall{}q:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{}).  (rat-int-part(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  |  let  x,r  =  p  in  q  =  (x  +  r)\}  )
Date html generated:
2018_05_22-AM-00_27_34
Last ObjectModification:
2017_07_26-PM-06_56_42
Theory : rationals
Home
Index