Thm* l:AdjList. adjl_to_adjm(l) AdjMatrix | [adjl_to_adjm_wf] |
Thm* m:AdjMatrix. adjl-graph(adjm_to_adjl(m)) adjm-graph(m) | [adjm_to_adjl_graph] |
Thm* m:AdjMatrix. adjm_to_adjl(m) AdjList | [adjm_to_adjl_wf] |
Thm* A:AdjList, T:Type, s:T, f:(T Vertices(adjl-graph(A)) T). L:Vertices(adjl-graph(A)) List. no_repeats(Vertices(adjl-graph(A));L) & ( y:Vertices(adjl-graph(A)). (y L)) & adjl-vertex-accum(A;s',x'.f(s',x');s) = list_accum(s',x'.f(s',x');s;L) | [adjl-vertex-accum-properties] |
Thm* A:AdjList, T:Type, s:T, f:(T Vertices(adjl-graph(A)) T). adjl-vertex-accum(A;s',x'.f(s',x');s) T | [adjl-vertex-accum_wf] |
Thm* A:AdjList, T:Type, s:T, x:Vertices(adjl-graph(A)), f:(T Vertices(adjl-graph(A)) T). L:Vertices(adjl-graph(A)) List. ( y:Vertices(adjl-graph(A)). x-adjl-graph(A)- > y  (y L)) & adjl-edge-accum(A;s',x'.f(s',x');s;x) = list_accum(s',x'.f(s',x');s;L) | [adjl-edge-accum-properties] |
Thm* A:AdjList, T:Type, s:T, x:Vertices(adjl-graph(A)), f:(T Vertices(adjl-graph(A)) T). adjl-edge-accum(A;s',x'.f(s',x');s;x) T | [adjl-edge-accum_wf] |
Thm* A:AdjList, x,y:Vertices(adjl-graph(A)). x =A= y  x = y | [assert_eq_adjl] |
Thm* A:AdjList, x,y:Vertices(adjl-graph(A)). x =A= y  | [eq_adjl_wf] |
Thm* A:AdjList. adjl-graph(A) Graph | [adjl-graph_wf] |
Thm* t:AdjList. t.out t.size ( t.size List) | [adjl_out_wf] |
Thm* t:AdjList. t.size  | [adjl_size_wf] |
Thm* M:AdjMatrix, T:Type, s:T, x:Vertices(adjm-graph(M)), f:(T Vertices(adjm-graph(M)) T). L:Vertices(adjm-graph(M)) List. ( y:Vertices(adjm-graph(M)). x-adjm-graph(M)- > y  (y L)) & adjm-edge-accum(M;s',x'.f(s',x');s;x) = list_accum(s',x'.f(s',x');s;L) | [adjm-edge-accum-properties] |
Thm* M:AdjMatrix, T:Type, s:T, x:Vertices(adjm-graph(M)), f:(T Vertices(adjm-graph(M)) T). adjm-edge-accum(M;s',x'.f(s',x');s;x) T | [adjm-edge-accum_wf] |
Thm* M:AdjMatrix, T:Type, s:T, f:(T Vertices(adjm-graph(M)) T). L:Vertices(adjm-graph(M)) List. no_repeats(Vertices(adjm-graph(M));L) & ( y:Vertices(adjm-graph(M)). (y L)) & adjm-vertex-accum(M;s',x'.f(s',x');s) = list_accum(s',x'.f(s',x');s;L) | [adjm-vertex-accum-properties] |
Thm* M:AdjMatrix, T:Type, s:T, f:(T Vertices(adjm-graph(M)) T). adjm-vertex-accum(M;s',x'.f(s',x');s) T | [adjm-vertex-accum_wf] |
Thm* M:AdjMatrix, x,y:Vertices(adjm-graph(M)). x =M= y  x = y | [assert_eq_adjm] |
Thm* t:AdjMatrix. t.adj t.size  t.size   | [adjm_adj_wf] |
Thm* t:AdjMatrix. t.size  | [adjm_size_wf] |
Thm* For any graph
the_obj:GraphObject(the_graph), L:V List. ( i:V. (i L))  (non-trivial-loop-free(the_graph)  topsortedl(the_graph;L;topsortl(the_obj;L))) & ( i:V. (i topsortl(the_obj;L))) & no_repeats(V;topsortl(the_obj;L)) | [topsortl-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph), L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & dfsl-traversal(the_graph;L;dfsl(the_obj;L)) & ( i:V. (i L)  (inr(i) dfsl(the_obj;L)) & (inl(i) dfsl(the_obj;L))) | [dfsl-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph), L:V List, s:Traversal, x:V. dfl-traversal(the_graph;L;s)  ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *x)  dfl-traversal(the_graph;L @ [x];dfs(the_obj;s;x)) | [dfs-dfl-traversal] |
Thm* For any graph
the_obj:GraphObject(the_graph). L:V List. (non-trivial-loop-free(the_graph)  topsorted(the_graph;L)) & ( i:V. (i L)) & no_repeats(V;L) | [topsort-exists] |
Thm* For any graph
the_obj:GraphObject(the_graph). (non-trivial-loop-free(the_graph)  topsorted(the_graph;topsort(the_obj))) & ( i:V. (i topsort(the_obj))) & no_repeats(V;topsort(the_obj)) | [topsort-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph). paren(V;depthfirst(the_obj)) & no_repeats(V+V;depthfirst(the_obj)) & df-traversal(the_graph;depthfirst(the_obj)) & depthfirst-traversal(the_graph;depthfirst(the_obj)) & ( i:V. (inr(i) depthfirst(the_obj)) & (inl(i) depthfirst(the_obj))) | [depthfirst-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph). df-traversal(the_graph;depthfirst(the_obj)) | [depthfirst-df-traversal] |
Thm* For any graph
the_obj:GraphObject(the_graph), i:V. (inr(i) depthfirst(the_obj)) & (inl(i) depthfirst(the_obj)) | [depthfirst_member] |
Thm* For any graph
the_obj:GraphObject(the_graph). paren(V;depthfirst(the_obj)) & no_repeats(V+V;depthfirst(the_obj)) | [depthfirst_paren] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(Traversal Prop). P(nil)  ( s:Traversal, i:V. paren(V;s)  no_repeats(V+V;s)  P(s)  P(dfs(the_obj;s;i)))  paren(V;depthfirst(the_obj)) & no_repeats(V+V;depthfirst(the_obj)) & P(depthfirst(the_obj)) | [depthfirst_induction2] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(Traversal Prop). P(nil)  ( s:Traversal, i:V. P(s)  P(dfs(the_obj;s;i)))  P(depthfirst(the_obj)) | [depthfirst_induction] |
Thm* For any graph
the_obj:GraphObject(the_graph). L:V List. no_repeats(V;L) & ( y:V. (y L)) & depthfirst(the_obj) = dfsl(the_obj;L) | [depthfirst-dfsl] |
Thm* For any graph
the_obj:GraphObject(the_graph), L:V List. ( i L.(inr(i) dfsl(the_obj;L)) & (inl(i) dfsl(the_obj;L))) | [dfsl_member] |
Thm* For any graph
the_obj:GraphObject(the_graph), L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) | [dfsl_paren] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:((V List) Traversal Prop). P(nil,nil)  ( L:V List, s:Traversal, i:V. paren(V;s)  no_repeats(V+V;s)  P(L,s)  P(L @ [i],dfs(the_obj;s;i)))  ( L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & P(L,dfsl(the_obj;L))) | [dfsl-induction2] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:((V List) Traversal Prop). P(nil,nil)  ( L:V List, s:Traversal, i:V. P(L,s)  P(L @ [i],dfs(the_obj;s;i)))  ( L:V List. P(L,dfsl(the_obj;L))) | [dfsl-induction1] |
Thm* For any graph
the_obj:GraphObject(the_graph). depthfirst(the_obj) Traversal | [depthfirst_wf] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. df-traversal(the_graph;s)  ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *i)  df-traversal(the_graph;dfs(the_obj;s;i)) | [dfs-df-traversal] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s:Traversal, i:V. (inl(i) s) (inr(i) s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  paren(V;s2)  ( k:V. (inr(k) s2)  j-the_graph- > *k)  paren(V;s3)  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. (inr(i) s1)  (inl(i) s1)  paren(V;s2)  l_disjoint(V+V;s2;s1)  no_repeats(V+V;s2)  ( j:V. (inr(j) s2)  i-the_graph- > *j)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) (inl(j) s1) (inr(j) s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction4] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s)  s' = nil) & ( (inr(i) s) & (inl(i) s)  ( s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s) | [dfs-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s) | [dfs-connect] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s)  s' = nil) & ( (inr(i) s) & (inl(i) s)  ( s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & dfs(the_obj;s;i) = (s' @ s) | [dfs-cases] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s1,s2:Traversal, i:V. P(i,s1,s2)  l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2))  ( s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) member-paren(x,y.the_obj.eq(x,y);j;s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction3] |
Thm* For any graph
the_obj:GraphObject(the_graph), l:V List, s:Traversal. s':Traversal. ( i:V. (i l)  (inl(i) s') (inl(i) s) (inr(i) s)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & list_accum(s',j.dfs(the_obj;s';j);s;l) = (s' @ s) | [dfs_accum_member] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (inl(i) s') (inl(i) s) (inr(i) s) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s) | [dfs_member] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s:Traversal, i:V. (inl(i) s) (inr(i) s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  paren(V;s2)  paren(V;s3)  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. (inl(i) s1)  (inr(i) s1)  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction2] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s1,s2:Traversal, i:V. P(i,s1,s2)  l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2))  ( s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1)  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction] |
Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. dfs(the_obj;s;i) Traversal | [dfs_wf] |
Thm* For any graph
the_obj:GraphObject(the_graph). M:(Traversal  ). ( i:V, s:Traversal. M([inl(i) / s]) M(s)) & ( i:V, s:Traversal. member-paren(x,y.the_obj.eq(x,y);i;s)  M([inr(i) / s]) < M(s)) | [dfs-measure] |
Thm* For any graph
the_obj:GraphObject(the_graph), x,y:V. Dec(x = y) | [decidable__equal_gr_v] |
Thm* For any graph
the_obj:GraphObject(the_graph), P,Q:(V  ). ( x:V. P(x)  Q(x))  ( x:V. P(x) & Q(x))  vertex-count(the_obj;x.P(x)) < vertex-count(the_obj;x.Q(x)) | [vertex-count-less] |
Thm* For any graph
the_obj:GraphObject(the_graph), P,Q:(V  ). ( x:V. P(x)  Q(x))  vertex-count(the_obj;x.P(x)) vertex-count(the_obj;x.Q(x)) | [vertex-count-le] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V  ). no_repeats(V;vertex-subset(the_obj;x.P(x))) & ( x:V. (x vertex-subset(the_obj;x.P(x)))  P(x)) | [vertex-subset-properties] |
Thm* For any graph
the_obj:GraphObject(the_graph), P:(V  ). vertex-subset(the_obj;x.P(x)) V List | [vertex-subset_wf] |
Thm* For any graph
the_obj:GraphObject(the_graph). ( x,y:V. the_obj.eq(x,y)  x = y) & ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) & ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) | [graphobj-properties] |
Thm* t:Graph Representation. t.obj r:t.type GraphObject(t.graph(r)) | [grr_obj_wf] |
Thm* t:Graph Representation. t.graph t.type Graph | [grr_graph_wf] |
Thm* t:Graph Representation. t.type Type | [grr_type_wf] |
Thm* For any graph
eq:(V V  ), eqw:( x,y:V. eq(x,y)  x = y), eacc:( T:Type. (T V T) T V T), eaccw:( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)), vacc:( T:Type. (T V T) T T), vaccw:( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)), other:Top. mkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other) GraphObject(the_graph) | [mkgraphobj_wf] |
Thm* For any graph
t:GraphObject(the_graph). t.other Top | [gro_other_wf] |
Thm* For any graph
t:GraphObject(the_graph). t.vaccw ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & t.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) | [gro_vaccw_wf] |
Thm* For any graph
t:GraphObject(the_graph), T:Type. t.vacc (T V T) T T | [gro_vacc_wf] |
Thm* For any graph
t:GraphObject(the_graph). t.eaccw ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & t.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) | [gro_eaccw_wf] |
Thm* For any graph
t:GraphObject(the_graph), T:Type. t.eacc (T V T) T V T | [gro_eacc_wf] |
Thm* For any graph
t:GraphObject(the_graph). t.eqw ( x,y:V. t.eq(x,y)  x = y) | [gro_eqw_wf] |
Thm* For any graph
t:GraphObject(the_graph). t.eq V V   | [gro_eq_wf] |
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'} | [graphobj_wf] |
Def For any graph representationP(the_graph;the_obj) == R:Graph Representation, r:R.type. P(R.graph(r);R.obj(r)) | [allgrep] |
Def GraphObject(the_graph) == eq:Vertices(the_graph) Vertices(the_graph)   ( x,y:Vertices(the_graph). (eq(x,y))  x = y) (eacc:( T:Type. (T Vertices(the_graph) T) T Vertices(the_graph) T) ( T:Type, s:T, x:Vertices(the_graph), f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. ( y:Vertices(the_graph). x-the_graph- > y  (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) (vacc:( T:Type. (T Vertices(the_graph) T) T T) ( T:Type, s:T, f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & ( y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) Top)) | [graphobj] |