is mentioned by
[sum_via_intseg_null] | |
[mul_via_intseg_null] | |
[factorial_ratio2] | |
[factorial_ratio] | |
[factorial_via_iter_wf] | |
[factorial_tail_via_iter_step_rw] | |
[factorial_tail_via_iter_step] | |
[factorial_tail_via_iter_zero] | |
[factorial_tail_via_iter_null] | |
[factorial_tail_split_mid] | |
[factorial_tail_via_iter_wf] | |
[zero_ann_iter_via_intseg] | |
[iter_prod_zero_iff_factor_zero] | |
[iter_nat_prod_one_iff_factors_one] | |
[exist_intseg_vs_iter_or] | |
[exist_intseg_null] | |
Thm* a<b ((i:{a..b}. P(i)) (i:{a..(b-1)}. P(i)) P(b-1)) | [or_via_exist_intseg_split_last] |
Thm* a<b Thm* Thm* (c:. b = c+1 ((i:{a..b}. P(i)) (i:{a..c}. P(i)) P(c))) | [or_via_exist_intseg_notnull] |
[all_intseg_vs_iter_and] | |
Thm* a<b ((i:{a..b}. P(i)) (i:{a..(b-1)}. P(i)) & P(b-1)) | [and_via_all_intseg_split_last] |
Thm* a<b Thm* Thm* (c:. b = c+1 ((i:{a..b}. P(i)) (i:{a..c}. P(i)) & P(c))) | [and_via_all_intseg_notnull] |
Thm* a<b ( i:{a..b}. e(i)) = ( i:{a..b-1}. e(i))+e(b-1) | [sum_via_intseg_split_last] |
[exp_reduce1] | |
Thm* ( i:{a..b}. f(i))( i:{a..b}. g(i)) = ( i:{a..b}. f(i)g(i)) | [mul_via_intseg_factors] |
Thm* a<b ( i:{a..b}. e(i)) = ( i:{a..b-1}. e(i))e(b-1) | [mul_via_intseg_split_last] |
[sum_exponent] | |
Thm* ac Thm* Thm* cb ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))( i:{c..b}. e(i)) | [mul_via_intseg_split_mid] |
Thm* ac Thm* Thm* cb ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))+( i:{c..b}. e(i)) | [sum_via_intseg_split_mid] |
[components_divide_iter_mul] | |
Thm* ac Thm* Thm* c<b Thm* Thm* ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))e(c)( i:{c+1..b}. e(i)) | [mul_via_intseg_split_pluck] |
Thm* ac Thm* Thm* c<b Thm* Thm* ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))+e(c)+( i:{c+1..b}. e(i)) | [sum_via_intseg_split_pluck] |
Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,c,b:, e:({a..b}A). Thm* (ac Thm* ( Thm* (c<b Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) Thm* (= Thm* (f((Iter(f;u) i:{a..c}. e(i)),f(e(c),Iter(f;u) i:{c+1..b}. e(i)))) | [iter_via_intseg_split_pluck] |
Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,b:, c:{a...b}, d:{c..b}, e:({a..b}A). Thm* ((i:{a..b}. i<c di e(i) = u) Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) = (Iter(f;u) i:{c..d}. e(i))) | [iter_via_intseg_amputate_units] |
Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,c,b:, e:({a..b}A). Thm* (ac Thm* ( Thm* (cb Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) Thm* (= Thm* (f((Iter(f;u) i:{a..c}. e(i)),Iter(f;u) i:{c..b}. e(i))) | [iter_via_intseg_split_mid] |
Thm* ( i:{a..b}. f(i))+( i:{a..b}. g(i)) = ( i:{a..b}. f(i)+g(i)) | [add_via_intseg_addends] |
Thm* is_commutative_sep(A; f) Thm* Thm* is_ident(A; f; u) Thm* Thm* is_assoc_sep(A; f) Thm* Thm* (a,b:, e,g:({a..b}A). Thm* (f((Iter(f;u) i:{a..b}. e(i)),Iter(f;u) i:{a..b}. g(i)) Thm* (= Thm* ((Iter(f;u) i:{a..b}. f(e(i),g(i))) Thm* ( A) | [iter_via_intseg_comp_binop] |
Thm* b-a = d-c Thm* Thm* (e:({a..b}A), g:({c..d}A). Thm* ((i:{a..b}, j:{c..d}. j-i = c-a e(i) = g(j) A) Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) = (Iter(f;u) j:{c..d}. g(j))) | [iter_via_intseg_shift] |
Thm* (Iter(f;u) i:{a..b}. e(i)) = (Iter(f;u) j:{a+k..b+k}. e(j-k)) | [iter_via_intseg_shift_rw] |
[one_exponentiation] | |
[mul_via_intseg_one] | |
Thm* is_ident(A; f; u) Thm* Thm* (a,b:, e:({a..b}A). Thm* ((i:{a..b}. e(i) = u) (Iter(f;u) i:{a..b}. e(i)) = u) | [iter_via_intseg_all_units] |
Thm* a<b Thm* Thm* (Iter(f;u) i:{a..b}. e(i)) = f((Iter(f;u) i:{a..b-1}. e(i)),e(b-1)) | [iter_via_intseg_split_last] |
Thm* a<b (c:. b = c+1 ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))+e(c)) | [sum_via_intseg_notnull] |
Thm* a<b (c:. b = c+1 ( i:{a..b}. e(i)) = ( i:{a..c}. e(i))e(c)) | [mul_via_intseg_notnull] |
Thm* a<b Thm* Thm* (c:. Thm* (b = c+1 Thm* ( Thm* ((Iter(f;u) i:{a..b}. e(i)) = f((Iter(f;u) i:{a..c}. e(i)),e(c))) | [iter_via_intseg_notnull] |
[mul_via_intseg_singleton] | |
[sum_via_intseg_singleton] | |
Thm* is_ident(A; f; u) Thm* Thm* (a,b:, e:({a..b}A). a+1 = b (Iter(f;u) i:{a..b}. e(i)) = e(a)) | [iter_via_intseg_singleton] |
Thm* ba (Iter(f;u) i:{a..b}. e(i)) = (Iter(f;u) i:{a..a}. e(i)) | [iter_via_intseg_nullnorm] |
Thm* ba (Iter(f;u) i:{a..b}. e(i)) = u | [iter_via_intseg_null] |
[exponent_one] | |
[exponent_zero] | |
[iter_via_intseg_wf] | |
Thm* (a:, b:{...a}. P(a,b)) Thm* Thm* (a:, b:{a+1...}. (c:{a..b}. P(a,c)) P(a,b)) (a,b:. P(a,b)) | [all_int_segs_by_upper_ind] |
Thm* (b:{...a}. P(a,b)) Thm* Thm* (b:{a+1...}. (c:{a..b}. P(a,c)) P(a,b)) (b:. P(a,b)) | [int_segs_from_base_by_upper_ind] |
Thm* (b:{...a}. P(a,a) P(a,b)) (b:{a...}. P(a,b)) (b:. P(a,b)) | [split_int_domain_by_norm_lower] |
Thm* (b:{a...}. (c:{a..b}. P(a,c)) P(a,b)) (b:{a...}. P(a,b)) | [int_seg_upper_ind] |
Thm* (a:, b:{...a}. P(a,b)) Thm* Thm* (a:. (b:{...a}. P(a,b)) (b:{a...}. P(a,b))) (a,b:. P(a,b)) | [all_int_pairs_via_all_splits] |
Thm* (b:{...a}. P(a,b)) Thm* Thm* ((b:{...a}. P(a,b)) (b:{a...}. P(a,b))) (b:. P(a,b)) | [split_int_domain] |
[is_commutative_sep_wf] | |
[is_commutative_wf] | |
[is_assoc_sep_wf] | |
[binary_ident_unique] | |
[is_ident_wf] | |
[is_commutative] | |
[is_assoc] | |
[is_ident] |
In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 union num thy 1 SimpleMulFacts
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html