Nuprl Lemma : grp_inv_diff

[g:IGroup]. ∀[a,b:|g|].  ((~ (a (~ b))) (b (~ a)) ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: igrp: IGroup imon: IMonoid true: True subtype_rel: A ⊆B infix_ap: y uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf grp_car_wf grp_inv_thru_op grp_inv_wf infix_ap_wf grp_op_wf grp_inv_inv iff_weakening_equal igrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality setElimination rename because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b:|g|].    ((\msim{}  (a  *  (\msim{}  b)))  =  (b  *  (\msim{}  a)))



Date html generated: 2017_10_01-AM-08_13_48
Last ObjectModification: 2017_02_28-PM-01_58_07

Theory : groups_1


Home Index