Nuprl Lemma : iabgrp_op_inv_assoc

[g:IAbGrp{i}]. ∀[a,b:|g|].  (((a ((~ a) b)) b ∈ |g|) ∧ (((~ a) (a b)) b ∈ |g|))


Proof




Definitions occuring in Statement :  iabgrp: IAbGrp{i} grp_inv: ~ grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B iabgrp: IAbGrp{i} igrp: IGroup squash: T imon: IMonoid true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q infix_ap: y prop:
Lemmas referenced :  mon_ident equal_wf mon_assoc grp_inv_wf grp_inv_assoc iff_weakening_equal grp_car_wf grp_op_wf grp_id_wf squash_wf true_wf iabgrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_pairFormation because_Cache addLevel applyEquality lambdaEquality imageElimination equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity independent_isectElimination independent_functionElimination productEquality universeEquality equalityUniverse levelHypothesis independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[g:IAbGrp\{i\}].  \mforall{}[a,b:|g|].    (((a  *  ((\msim{}  a)  *  b))  =  b)  \mwedge{}  (((\msim{}  a)  *  (a  *  b))  =  b))



Date html generated: 2017_10_01-AM-08_13_51
Last ObjectModification: 2017_02_28-PM-01_58_20

Theory : groups_1


Home Index