Nuprl Lemma : iabgrp_op_inv_assoc
∀[g:IAbGrp{i}]. ∀[a,b:|g|].  (((a * ((~ a) * b)) = b ∈ |g|) ∧ (((~ a) * (a * b)) = b ∈ |g|))
Proof
Definitions occuring in Statement : 
iabgrp: IAbGrp{i}
, 
grp_inv: ~
, 
grp_op: *
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
and: P ∧ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iabgrp: IAbGrp{i}
, 
igrp: IGroup
, 
squash: ↓T
, 
imon: IMonoid
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
infix_ap: x f y
, 
prop: ℙ
Lemmas referenced : 
mon_ident, 
equal_wf, 
mon_assoc, 
grp_inv_wf, 
grp_inv_assoc, 
iff_weakening_equal, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
squash_wf, 
true_wf, 
iabgrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairFormation, 
because_Cache, 
addLevel, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
independent_isectElimination, 
independent_functionElimination, 
productEquality, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[g:IAbGrp\{i\}].  \mforall{}[a,b:|g|].    (((a  *  ((\msim{}  a)  *  b))  =  b)  \mwedge{}  (((\msim{}  a)  *  (a  *  b))  =  b))
Date html generated:
2017_10_01-AM-08_13_51
Last ObjectModification:
2017_02_28-PM-01_58_20
Theory : groups_1
Home
Index