Nuprl Lemma : mon_when_true
∀[g:GrpSig]. ∀[b:𝔹]. ∀[x:|g|].  (when b. x) = x ∈ |g| supposing ↑b
Proof
Definitions occuring in Statement : 
mon_when: when b. p
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mon_when: when b. p
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
grp_car_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
baseClosed, 
independent_functionElimination, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:GrpSig].  \mforall{}[b:\mBbbB{}].  \mforall{}[x:|g|].    (when  b.  x)  =  x  supposing  \muparrow{}b
Date html generated:
2017_10_01-AM-08_17_08
Last ObjectModification:
2017_02_28-PM-02_02_05
Theory : groups_1
Home
Index