Nuprl Lemma : mon_when_true

[g:GrpSig]. ∀[b:𝔹]. ∀[x:|g|].  (when b. x) x ∈ |g| supposing ↑b


Proof




Definitions occuring in Statement :  mon_when: when b. p grp_car: |g| grp_sig: GrpSig assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mon_when: when b. p all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff not: ¬A false: False prop:
Lemmas referenced :  bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot equal_wf grp_car_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination sqequalRule baseClosed independent_functionElimination voidElimination equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[g:GrpSig].  \mforall{}[b:\mBbbB{}].  \mforall{}[x:|g|].    (when  b.  x)  =  x  supposing  \muparrow{}b



Date html generated: 2017_10_01-AM-08_17_08
Last ObjectModification: 2017_02_28-PM-02_02_05

Theory : groups_1


Home Index