Nuprl Lemma : mkpadic-equiv
∀[p:{2...}]. ∀[n:ℕ]. ∀[a:p-adics(p)].  ((a/p^n) ∈ {x:basic-padic(p)| bpa-equiv(p;<n, a>x)} )
Proof
Definitions occuring in Statement : 
mkpadic: (a/p^n)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
p-adics: p-adics(p)
, 
int_upper: {i...}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
pair: <a, b>
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mkpadic: (a/p^n)
, 
all: ∀x:A. B[x]
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
bpa-norm-equiv, 
mkpadic_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
padic_subtype_basic-padic, 
bpa-equiv_wf, 
p-adics_wf, 
nat_wf, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_pairEquality, 
hypothesis, 
dependent_set_memberEquality, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:p-adics(p)].    ((a/p\^{}n)  \mmember{}  \{x:basic-padic(p)|  bpa-equiv(p;<n,  a>x)\}  )
Date html generated:
2018_05_21-PM-03_26_39
Last ObjectModification:
2018_05_19-AM-08_23_45
Theory : rings_1
Home
Index