Nuprl Lemma : mkpadic-equiv

[p:{2...}]. ∀[n:ℕ]. ∀[a:p-adics(p)].  ((a/p^n) ∈ {x:basic-padic(p)| bpa-equiv(p;<n, a>;x)} )


Proof




Definitions occuring in Statement :  mkpadic: (a/p^n) bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) p-adics: p-adics(p) int_upper: {i...} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  pair: <a, b> natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mkpadic: (a/p^n) all: x:A. B[x] basic-padic: basic-padic(p) nat_plus: + int_upper: {i...} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  bpa-norm-equiv mkpadic_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf padic_subtype_basic-padic bpa-equiv_wf p-adics_wf nat_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_pairEquality hypothesis dependent_set_memberEquality isectElimination setElimination rename productElimination natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:p-adics(p)].    ((a/p\^{}n)  \mmember{}  \{x:basic-padic(p)|  bpa-equiv(p;<n,  a>x)\}  )



Date html generated: 2018_05_21-PM-03_26_39
Last ObjectModification: 2018_05_19-AM-08_23_45

Theory : rings_1


Home Index