Nuprl Lemma : padic_subtype_basic-padic

[p:ℤ]. (padic(p) ⊆basic-padic(p))


Proof




Definitions occuring in Statement :  padic: padic(p) basic-padic: basic-padic(p) subtype_rel: A ⊆B uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T padic: padic(p) basic-padic: basic-padic(p) so_lambda: λ2x.t[x] nat: so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False p-units: p-units(p)
Lemmas referenced :  subtype_rel_product nat_wf ifthenelse_wf eq_int_wf p-adics_wf p-units_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_rel_self eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality instantiate setElimination rename hypothesisEquality natural_numberEquality universeEquality because_Cache independent_isectElimination lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination cumulativity independent_functionElimination voidElimination axiomEquality intEquality

Latex:
\mforall{}[p:\mBbbZ{}].  (padic(p)  \msubseteq{}r  basic-padic(p))



Date html generated: 2018_05_21-PM-03_26_01
Last ObjectModification: 2018_05_19-AM-08_22_55

Theory : rings_1


Home Index