Nuprl Lemma : padic_subtype_basic-padic
∀[p:ℤ]. (padic(p) ⊆r basic-padic(p))
Proof
Definitions occuring in Statement : 
padic: padic(p)
, 
basic-padic: basic-padic(p)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
padic: padic(p)
, 
basic-padic: basic-padic(p)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
p-units: p-units(p)
Lemmas referenced : 
subtype_rel_product, 
nat_wf, 
ifthenelse_wf, 
eq_int_wf, 
p-adics_wf, 
p-units_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_rel_self, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
instantiate, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
axiomEquality, 
intEquality
Latex:
\mforall{}[p:\mBbbZ{}].  (padic(p)  \msubseteq{}r  basic-padic(p))
Date html generated:
2018_05_21-PM-03_26_01
Last ObjectModification:
2018_05_19-AM-08_22_55
Theory : rings_1
Home
Index