Nuprl Lemma : p-shift-0
∀p,n:ℕ+. (p-shift(p;0(p);n) = 0(p) ∈ p-adics(p))
Proof
Definitions occuring in Statement :
p-shift: p-shift(p;a;k)
,
p-int: k(p)
,
p-adics: p-adics(p)
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
p-int: k(p)
,
p-reduce: i mod(p^n)
,
nat: ℕ
,
nat_plus: ℕ+
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
p-shift: p-shift(p;a;k)
,
subtype_rel: A ⊆r B
Lemmas referenced :
equal-p-adics,
p-shift_wf,
p-int_wf,
nat_plus_wf,
modulus_base,
exp_wf_nat_plus,
nat_plus_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
istype-le,
istype-false,
exp-positive,
istype-less_than,
exp_wf2,
itermAdd_wf,
int_term_value_add_lemma,
decidable__lt,
zero-div-rem,
exp_wf3,
nat_plus_inc_int_nzero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
closedConclusion,
natural_numberEquality,
hypothesis,
independent_isectElimination,
productElimination,
inhabitedIsType,
universeIsType,
sqequalRule,
dependent_set_memberEquality_alt,
setElimination,
rename,
dependent_functionElimination,
unionElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
Error :memTop,
independent_pairFormation,
voidElimination,
productIsType,
functionExtensionality,
addEquality,
applyEquality
Latex:
\mforall{}p,n:\mBbbN{}\msupplus{}. (p-shift(p;0(p);n) = 0(p))
Date html generated:
2020_05_19-PM-10_08_23
Last ObjectModification:
2020_01_08-PM-06_08_20
Theory : rings_1
Home
Index