Nuprl Lemma : atom_dset_wf

atom_dset() ∈ DSet


Proof




Definitions occuring in Statement :  atom_dset: atom_dset() dset: DSet member: t ∈ T
Definitions unfolded in proof :  atom_dset: atom_dset() member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a eqfun_p: IsEqFun(T;eq) infix_ap: y uiff: uiff(P;Q) and: P ∧ Q prop: subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mk_dset_wf eq_atom_wf equal-wf-base atom_subtype_base iff_weakening_uiff assert_wf assert_of_eq_atom assert_witness uall_wf uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin atomEquality lambdaEquality hypothesisEquality hypothesis because_Cache independent_isectElimination sqequalRule isect_memberFormation independent_pairFormation applyEquality productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry addLevel uallFunctionality independent_functionElimination cumulativity instantiate

Latex:
atom\_dset()  \mmember{}  DSet



Date html generated: 2017_10_01-AM-08_13_25
Last ObjectModification: 2017_02_28-PM-01_57_36

Theory : sets_1


Home Index