Nuprl Lemma : module_act_is_grp_hom

A:Rng. ∀m:A-Module. ∀a:|A|.  IsMonHom{m↓grp,m↓grp}(m.act a)


Proof




Definitions occuring in Statement :  module: A-Module grp_of_module: m↓grp alg_act: a.act all: x:A. B[x] apply: a rng: Rng rng_car: |r| monoid_hom_p: IsMonHom{M1,M2}(f)
Definitions unfolded in proof :  all: x:A. B[x] monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) rng_of_alg: a↓rg rng_car: |r| rng_plus: +r rng: Rng module: A-Module grp_id: e rng_zero: 0 infix_ap: y
Lemmas referenced :  grp_car_wf grp_of_module_wf rng_car_wf module_wf rng_wf module_act_plus module_act_zero_r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation introduction cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache productElimination

Latex:
\mforall{}A:Rng.  \mforall{}m:A-Module.  \mforall{}a:|A|.    IsMonHom\{m\mdownarrow{}grp,m\mdownarrow{}grp\}(m.act  a)



Date html generated: 2016_05_16-AM-07_26_56
Last ObjectModification: 2015_12_28-PM-05_07_47

Theory : algebras_1


Home Index