Nuprl Lemma : module_act_zero_r

A:Rng. ∀m:A-Module. ∀a:|A|.  ((a m.act m.zero) m.zero ∈ m.car)


Proof




Definitions occuring in Statement :  module: A-Module alg_act: a.act alg_zero: a.zero alg_car: a.car infix_ap: y all: x:A. B[x] equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T infix_ap: y uall: [x:A]. B[x] rng: Rng module: A-Module squash: T prop: and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q implies:  Q abgrp: AbGrp grp: Group{i} mon: Mon imon: IMonoid grp_car: |g| pi1: fst(t) grp_of_module: m↓grp add_grp_of_rng: r↓+gp rng_car: |r| rng_of_alg: a↓rg alg_car: a.car grp_op: * pi2: snd(t) rng_plus: +r grp_id: e rng_zero: 0 uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q
Lemmas referenced :  alg_act_wf rng_car_wf alg_zero_wf module_wf rng_wf equal_wf squash_wf true_wf alg_car_wf module_plus_ident subtype_rel_self iff_weakening_equal module_act_plus grp_of_module_wf2 grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf grp_id_wf grp_of_module_wf grp_car_wf grp_sig_wf monoid_p_wf grp_op_wf inverse_wf grp_inv_wf comm_wf grp_eq_shift_right mon_ident grp_inv_thru_op grp_inv_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality hypothesis because_Cache lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination independent_functionElimination setEquality cumulativity

Latex:
\mforall{}A:Rng.  \mforall{}m:A-Module.  \mforall{}a:|A|.    ((a  m.act  m.zero)  =  m.zero)



Date html generated: 2018_05_22-AM-07_44_27
Last ObjectModification: 2018_05_19-AM-08_33_26

Theory : algebras_1


Home Index