Nuprl Lemma : module_eqfun_p

[A:Rng]. ∀[m:A-DModule]. ∀[x,y:m.car].  uiff(↑(x m.eq y);x y ∈ m.car)


Proof




Definitions occuring in Statement :  dmodule: A-DModule alg_eq: a.eq alg_car: a.car assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y equal: t ∈ T rng: Rng
Definitions unfolded in proof :  dmodule: A-DModule module: A-Module uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: infix_ap: y all: x:A. B[x] rng: Rng implies:  Q sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} eqfun_p: IsEqFun(T;eq)
Lemmas referenced :  rng_wf eqfun_p_wf rng_plus_wf bilinear_p_wf alg_act_wf rng_one_wf rng_times_wf action_p_wf comm_wf alg_minus_wf alg_zero_wf alg_plus_wf group_p_wf algebra_sig_wf set_wf alg_car_wf equal_wf assert_witness decidable__assert sq_stable_from_decidable rng_car_wf alg_eq_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation setElimination thin rename hypothesis lemma_by_obid sqequalHypSubstitution isectElimination applyEquality dependent_functionElimination hypothesisEquality independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry instantiate setEquality productEquality lambdaEquality lambdaFormation cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}[A:Rng].  \mforall{}[m:A-DModule].  \mforall{}[x,y:m.car].    uiff(\muparrow{}(x  m.eq  y);x  =  y)



Date html generated: 2016_05_16-AM-07_26_41
Last ObjectModification: 2016_01_16-PM-09_59_58

Theory : algebras_1


Home Index