Nuprl Lemma : mprime_imp_matomic

g:IAbMonoid. (Cancel(|g|;|g|;*)  (∀a:|g|. (IsPrime(a)  Atomic(a))))


Proof




Definitions occuring in Statement :  matomic: Atomic(a) mprime: IsPrime(a) all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] matomic: Atomic(a) and: P ∧ Q mprime: IsPrime(a) not: ¬A mreducible: Reducible(a) exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q false: False
Lemmas referenced :  mprime_wf grp_car_wf cancel_wf grp_op_wf iabmonoid_wf mreducible_wf mdivides_wf squash_wf true_wf grp_sig_wf iff_weakening_equal mdivides_refl mproper_div_cond equal_wf abmonoid_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination because_Cache independent_pairFormation productElimination independent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination unionElimination hyp_replacement applyLambdaEquality voidElimination equalityUniverse levelHypothesis

Latex:
\mforall{}g:IAbMonoid.  (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a:|g|.  (IsPrime(a)  {}\mRightarrow{}  Atomic(a))))



Date html generated: 2017_10_01-AM-09_58_24
Last ObjectModification: 2017_03_03-PM-00_59_36

Theory : factor_1


Home Index