Nuprl Lemma : mprime_imp_matomic
∀g:IAbMonoid. (Cancel(|g|;|g|;*)
⇒ (∀a:|g|. (IsPrime(a)
⇒ Atomic(a))))
Proof
Definitions occuring in Statement :
matomic: Atomic(a)
,
mprime: IsPrime(a)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
iabmonoid: IAbMonoid
,
grp_op: *
,
grp_car: |g|
,
cancel: Cancel(T;S;op)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
iabmonoid: IAbMonoid
,
imon: IMonoid
,
uall: ∀[x:A]. B[x]
,
matomic: Atomic(a)
,
and: P ∧ Q
,
mprime: IsPrime(a)
,
not: ¬A
,
mreducible: Reducible(a)
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
false: False
Lemmas referenced :
mprime_wf,
grp_car_wf,
cancel_wf,
grp_op_wf,
iabmonoid_wf,
mreducible_wf,
mdivides_wf,
squash_wf,
true_wf,
grp_sig_wf,
iff_weakening_equal,
mdivides_refl,
mproper_div_cond,
equal_wf,
abmonoid_comm
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
isectElimination,
because_Cache,
independent_pairFormation,
productElimination,
independent_functionElimination,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
sqequalRule,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
unionElimination,
hyp_replacement,
applyLambdaEquality,
voidElimination,
equalityUniverse,
levelHypothesis
Latex:
\mforall{}g:IAbMonoid. (Cancel(|g|;|g|;*) {}\mRightarrow{} (\mforall{}a:|g|. (IsPrime(a) {}\mRightarrow{} Atomic(a))))
Date html generated:
2017_10_01-AM-09_58_24
Last ObjectModification:
2017_03_03-PM-00_59_36
Theory : factor_1
Home
Index