Nuprl Lemma : length_mon_for_char
∀A:Type. ∀as:A List.  (||as|| = (For{<ℤ+>} x ∈ as. 1) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
, 
int_add_grp: <ℤ+>
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
int_add_grp: <ℤ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_op: *
, 
infix_ap: x f y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
mon_for_cons_lemma, 
length_of_cons_lemma, 
mon_for_nil_lemma, 
length_of_nil_lemma, 
list_wf, 
int_add_grp_wf, 
mon_for_wf, 
length_wf, 
equal_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
intEquality, 
cumulativity, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}as:A  List.    (||as||  =  (For\{<\mBbbZ{}+>\}  x  \mmember{}  as.  1))
Date html generated:
2016_05_16-AM-07_36_28
Last ObjectModification:
2016_01_16-PM-11_13_06
Theory : list_2
Home
Index