Nuprl Lemma : null_functionality_wrt_permr

T:Type. ∀as,bs:T List.  ((as ≡(T) bs)  null(as) null(bs))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs null: null(as) list: List bool: 𝔹 all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q implies:  Q prop: cons: [a b] top: Top not: ¬A false: False
Lemmas referenced :  list_wf list-cases null_nil_lemma btrue_wf permr_wf nil_wf product_subtype_list null_cons_lemma istype-void cons_wf bfalse_wf not_permr_cons_nil permr_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis universeEquality dependent_functionElimination unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality_alt voidElimination independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}as,bs:T  List.    ((as  \mequiv{}(T)  bs)  {}\mRightarrow{}  null(as)  =  null(bs))



Date html generated: 2019_10_16-PM-01_04_02
Last ObjectModification: 2018_10_08-AM-10_18_11

Theory : list_2


Home Index