Nuprl Lemma : mset_inter_comm
∀s:DSet. ∀a,b:MSet{s}.  ((a ⋂s b) = (b ⋂s a) ∈ MSet{s})
Proof
Definitions occuring in Statement : 
mset_inter: a ⋂s b
, 
mset: MSet{s}
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
mset_count_wf, 
imin_com, 
dset_wf, 
mset_wf, 
iff_weakening_equal, 
mset_count_inter, 
equal_wf, 
set_car_wf, 
true_wf, 
squash_wf, 
all_wf, 
mset_inter_wf, 
eq_mset_iff_eq_counts
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
intEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    ((a  \mcap{}s  b)  =  (b  \mcap{}s  a))
Date html generated:
2016_05_16-AM-07_49_36
Last ObjectModification:
2016_01_16-PM-11_39_40
Theory : mset
Home
Index