Nuprl Lemma : mset_count_inter
∀s:DSet. ∀as,bs:MSet{s}. ∀c:|s|.  ((c #∈ (as ⋂s bs)) = imin(c #∈ as;c #∈ bs) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mset_inter: a ⋂s b
, 
mset_count: x #∈ a
, 
mset: MSet{s}
, 
imin: imin(a;b)
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
mset: MSet{s}
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
mset_count: x #∈ a
, 
mset_inter: a ⋂s b
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
set_car_wf, 
mset_wf, 
dset_wf, 
list_wf, 
permr_wf, 
equal_wf, 
equal-wf-base, 
squash_wf, 
true_wf, 
count_functionality, 
lmin_wf, 
lmin_functionality_wrt_permr, 
imin_wf, 
count_wf, 
iff_weakening_equal, 
count_lmin
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
pointwiseFunctionalityForEquality, 
intEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_functionElimination, 
productEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:MSet\{s\}.  \mforall{}c:|s|.    ((c  \#\mmember{}  (as  \mcap{}s  bs))  =  imin(c  \#\mmember{}  as;c  \#\mmember{}  bs))
Date html generated:
2017_10_01-AM-10_00_01
Last ObjectModification:
2017_03_03-PM-01_00_54
Theory : mset
Home
Index